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"!- ABSTRACT -

._-. A comparison study was conducted on operating a I20-inch telescope
;_ in a 28.5 degree inclined 24-hour synchronous orbit with a 28.5 degree
...# inclined 250-nautica! mile orbit. (This study investigation was an
•_ extension of "A Systems Study of a Manned Orbital Telescope," reported

. |_

# in Boeing document D2-84042-1, also identified as NASA Centractor Report
,.:,..:_ CR-66047.) Comparisons of observation time, stability and c_ntrol,
_ "--_-.:-._ thermal distortion, radiation and micrometeoroids and costs are made
"_ between the two orbits. The study concluded that the Manned Orbital
__->/ Telescope operating in a synchronous orbit will have considerable.tj--...

advantages with respect to observation time and thermal stability, but
_5_' the logistics costs will increase.
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i. 0 INTRODUCTION

The presentinvestigationofthe MOT in 31ntohronous orbitisa natura_extensiol:
of the s_dy of the manned orbital tele._cope in low Earth orbit as reported i_.
Boeing Document D2_84042-1. Early in that study, it w,_ apparent that there
might be sigr_tficant advartages and dmadvantages in goh'_g to such an orbit.
For example, in a synchronous orbit there is _. considerable gain in total obser.-
vation time and in uy,interrupted observation tin-} f_r a particular target, klso,
t;ne cyclic nature of the th6rmal er,vironment would be largely eliminated, and
problems of thermal distortion control are thus reduced. Howeve.r, such poten-
tial advantages might well be offset by difficulties in logistic resupply and crew
cycling.

This preliminary comparison was made on the basis of the MOT in a 28.5-degree
inclined, 24-hour synchronous orbit and in a low Earth(250-nautical-mile) 28.5-
degree inclined orbit. The scientific objectives of the MOT in synchror,-ous orbit re-
mained the same as in low Earth orbit and, hence, will not be recapitulated here.

Both the soft-gimbal and detached rood s of operation were considered.

Specific objectives of _he adaed study were to:

1_ Establish the feasibility of placing and maintaining the MOT iu a sy,_chron0us
orbit;

2) Make comparisons between tow Earth orbit and. high Earth orbit in the areas
of available observation time, thermal distortions, stability and control re-
4uirements, radiation and micrometeoroid protection, data management,
communications, and electrical power;

3) Recommend tim best altitude and mode of operation for the MOT.

The major study constraints are as follow_:

Q The concept for putting MORL in synchronous orbit shall be that described
in Douglas Report SM 46079 except for minor modifications.

, • The basic MOT configuration (developed in D2--84042-1) will be launchcd
unmanned and rendezvoused with the MORL, slmi. '.r to low Earth orbit.

"_ The latmch vehicle for the MOT, MORL, and logistic vehicles will be the
Saturn V.

• The orbital configuration for the synchronous oz:_it will be as similar.as pos-
sible to the low Earth orbit to facilitate diroct comparisons.

Feasibility of placing and maintaining the MOT in synchronous orbit was studied
by determining if a reasonable launch configuration could be developed for the

various elements of the observatory, including the MOT_ MORL, and the logistics
vehicle. Problems of putting these elements into synchronous orbit, rendezvousing,

1966017557-010
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,rod assembting them into an observatory were examined as were the problems
associated with resupplying the observatory. The comparisons in observation
time, thermal distortion, etc°, were made to identiiy sil,mificant problems or

: advantages in going to synchronous orbit. To make the picture somewhat more
complete, a preliminary cost comparison was added. This cost comparison
was based only on booster and booster launch costs because it was assumed that
MOT and MORL and logistics vehicle costs would be very nearly equal for high
and low _arth orbits.

!
I

J
t

{
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2
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2. 0 SUMMARY

Principal results of the synchronous orbit study are summarized below. Evalu-
ation and comparison of the various system concepts investigated during the study
are presented in Section 4.7. Detailed disclmsions of study items are located in
pertinent sections of the report.

2.1 CONCEPTS AND CONFIGURATION

Operational system concepts and vehicle configurations based on the low-Earth-
orbit study were developed for operation in synchronous orbit. No major change
in overall operational concept or configurations appears to be necessary. Elimi-
nation of the forward telescope doors in tl:e synchronous-orbit configuration is
possible because of the brief exposure to Earth's albedo during any one orbit.
Relatively minor changes are required with respect to radiation protection and
logistics support. Use of the _at_tu._ V as a launch vehicle for the synchronous-

: orbit system provides a wide margin of weight growth in the MOT system.

The logistics weight requirements for synchronous orbit are less severe than for

' the low _arth orbit because of the increased margin of booster capability and the
, reduction by approximately 50 perceut of propellants required for attitude control,

stationkeeping, and orbit-keepiug for a given period of time.

Operation of the MOT coupled to the MORL by a soft-gimbal mount appears to be
preferable for the synchronous-orbit case; additional investigation is warranted
"n this area.

2.2 OPERATIONAL ANALYSIS

Th._ opc_:,_;.,:,_-.1concepts developed for the low-Earth-orbit system were found to =

also apply generally to operation in synchronous orbit. Large gains in total obser-
, ration time and the potential duration of a single exposure are achievable in syn-

chronous orbit. With proper target selection, stellar. _tlactic, and intergalactic (
observations from synchronv,._ orbit are. possible for 24 hotu:r, per orbit, and

, planetary observations axe achievable for -'2,. 4 hours per orbit. This effectively
doubles the total observation time available in low Earth orbit and provides for =

, long uninterr_ed exposure_.

' During thisstudy, it was determined that the sensitivity of film to radiation re- _i
quires its ttse within approximately 60 days in both the low Earth and synchronous
orbits. A funct_gnal and fimeline analysis for each case was developed to include i
this consideration.

J

2.3 STRUCTURES !

Th_ structural design of the MOT was determined to be compatible with the require- i

ments for launch by the Saturn V and operation in synchronous orbit. Mirror i

] 966017557-012
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dynamics and stresses during launch to synchronous orbit were investigated and
u_...,._u w uv v,iuaL _. or less *_"-u.,_.**_,..o_..... cnc "_'mfar_.d__..__ _. for launch to the low
Earth orbit,

Thermal deformation of the primary mirror in synchronous orbi'L was de_ermined
to degrade the telescope performance less than in the low-Earth-orbit case. Total
deformation of the mirror is greater in synchronous orbit (:esulting in a greater

change in focal length); but the root-memo-square deviation fl-om a parabolic sur-
face is nearly negligible because of the nearly constant viewing conditio_m,

2.4 RADIATION K_:.'DMICROMETEOROID EFFECTS

The increased radiation environment in synchronous orbit over that in a low Earth

orbit requires addition of approximately 14,200 pounds of shielding in the MORL,

including the incorporation of a biowelI to protect the crew against solar flares for

180 days. An additional 1000 pounds are requirec) to prt;tect the film for 60 days.
Thi_ Weight penalty is well within the launch capability of the Saturn V.

The primawj-mirror perfov_mance over a period of 5 years i--_degraded slightly
•,more in .,:ynchronous orbit.

Micrometenroi.4 effects in either orbit altitude were deternfined to have nearly
negligible effects on the mirror or telescope structure during a normal period
of ope ratior._..

2.5 ATTITUDE STABILITY AND CONTROL

The external disturbance environment in synchroneus orbit w_ determined and
its effects compared with th_ of the lc,w Earth orbit. The external dkuturbance

torques are *_wcorders of mag__itude less in synchronot_ orbit; this results in a
reduction of approxir_.ately 50 percent in the controi-moment-gyro momentum
require.d-- a slight advantage for the s]mchronous orbit.

Control within the 0.01-arc-second stability required of the telescope appears
feasible at either altitude and in either mode of operation.

2.6 DA'rA MANAGEMENT, COI_._b-NICATIONS, AND ELECTRICAL POWER

Data management and commtm!eations are improved by operation in s:,_._hronous
orbit in that continuous communication and data transfer to a single ground station
are possible. Time delay in data transmission and the amount of redundant data
transferred is thus reduced. Also eliminated is the need for a rapidly slewing
space-vehicle-borne antenna as is required for the low-Earth-orb': case where
considerable relative motion is imposed between the transmitter and receiver,

The electrical power subsystem for the MOT in synchronous orbit is similar to

that for the low Earth orbit. However, for the MOT operating in the detached

4
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..... _^ "-' _:_,':.hronoLu_ orbit, reduction of approximately 40 percent in size of the
soil, v,.n_o ,_d a r_duetion of _pproximately 65 percent in battery, weight is

.......... _*_"_ therealizec o This is due to the decreased amount of time per orbit ___._ _._-.-.....
shadow ..)f the Earth.

2.7 CQST

"v_'_tio _ of the MOT and MORL in synchronous orbit results in an increase ir
ia:'_..:._:, w:hicle nnd launch ,,.... ati'_r_ co_,t by a _:'actor of approximately 3. O over

: those of the ]ow-Earth-orbit system. However, the usable cb_ervation time is
, a0w,...'_:.-ly do_:bled_ resulting in an effective launch-cost-per-obsex_,ation-
: " .._...-...........,,,_,_,.. of 1,5. Consideration of total system cost wou._d reduce this
l

factor still further,

i 2.8 GENERAL CONCLUSIONS AND RECOMMENDATIONS

Results of this study indicate that oper_ion of _e manned o_ital telescope in
s_mhronous orbit, in the soft-gimbal mode_ is preferable unless total budgetary
limitations or avail,"bility of launch vehicles prohibit inclusion of the Saturn V
in the system,

: Future studies pertaining to the manne_ ,,_:_z.: te!eseope _.,vuld include:

• _ 1) Development of a 120-inch primary mirror_ . :

=+ 2) Detailed investigation of attitude-contIx_l-system requirements;

3) Further design and c.valuation of soft-gimbal hardware;

4) Defln_t._on and integration of asi.ronautical mad astrophys,:eal requiremenm u,_"_
' the observai.,)._-_--;
¢

,' 5) Def_-ition_..of a de-¢elopmen_, p_x,gm_. ul_n and a detailed ce_ting _.._..-_,,_,_-..._.l

,!

!
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,_ 3.0 SYNCHRONOUS ORBIT MOT SYSTEM FEASIBILI'rY

3 I CONCEPT AND CONFIGURATION DEFINITION

This section describes operatiork_l and configuration concepts develnpcd [or the

_ manned orbital telescope for operation in a 24-hour s_._.chronous orbit. In brief,
__ the overall concept is to operate the MOT in a 28.5-degree inclined, synchronous

orbit in ....... *" _v:_, the Douglas MORL directly attached to the MORL
,_ C oIljtlllLo,...-.,n .... _. --through a soft-gimbal system o," in a detached mode. Support vehicles for thc
!_ MORL-MOT synchronous, orbit system include the follewing:

:_ • Apollo Command Se;'viee Module (CSM) _ Used for crew transport and as a

i command vehicle for the multimission module.• • Douglas Multimission Module _Used as a logistics carrier and launched in
conjunction with an Apollo CSM.

_Used fgr transportation in orbit between the MORL and the
Shuttle Vehicle

i,_ detached MOT.

,_ • Saturn V _Used to lao.nch MORL-MOT components into synchronous orbit.

i'i 3.1.1 System DescriptionThe postulated MOT system for the 24-hour synchronous orbit is an extension of
_ the operational systems and configurations defined in a previous NASA-contractedL_

_ s_,dy (Reterence 1). The basic telescope concep_ is a 120-inch-aperture telescope
-_ developed for operation at an altitude of 250 nautical miles. Tlns telescope is

operated in conjunction with the synchronous-orbit MORL concept of t_',e Douglas
J Aircraft Company (Reference 9). The launch vehicle considered in this study ex -

tension is the three-stage Saturn V comprised of an S-IC, S-II, and S-!VB, with

i_ a payload capability of 79,600 pounds to synchronous orbit, as defined in theDouglas MORL study.

!_ For rendezvous with the MORL in synchronous orbit, the MOT, Apollo, and logis-

tics vehicles are launched into a 100-nautical-mile holding orbit inclined at 28.5
degrees. From here a Hohmann transfer is made to synchronoas-orbit altitude
for rendezvous with the MORL. The S-!VB (_hird) stage of the Saturn V is used to

•. perform the transfer maneuver, Propulsion for the MOT final rend_ vous correc-

tions is supplied by two 1000-pound thrusters located on the MOT cabin During
-. _he launch of the MOT, an outer fairing and the nose cone are jettisoned after

; first-stage burnout at approximately 200,000-foot altitude to ma_dmize the pay-
: load capability in orbit. The vehicle remains in this configuration until after
' burnout of the S-IV stage then separation occurs. The general '_equence of
• launch _:_erations and parts jettisoning is illu_',trated in Figure 3.1-1.

: For the present study, it was assumed that the MORL will be operational by the
:' planned time of first operation of the MOT _ approximately 1980.

7
=
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The Douglas 24-hour synchronous-orbii, MOKL concept has been modified some-
what to meet operational requirements of the telescope. The MORL is requir,..d
to accommodate a six-man crew re1 a period of 3 to 5 years. Part of the crew

isrotatedappro_mately each 90days, usipga nominal _._ytime of 180 days for
each member. Three-man Apollocommand modules are used totransportthe

crew bePzeenEarth and the orbit_.ngMORL. Expendables,otherthanphotographic

film,are resuppliedapproximaSelyevery 180 days. LD"aetothelimitedstaytime
forul,exposedand unprocessedphotographicfilm,itisresuppliedand returned

toEarth every 90 days;thi_'_isaccomplishedinconjunctionwiththecrew rotation

flights.

For this study, the I_,IORL is moc_:-ied to enable docking, and attachment of the
MOT and the docking and repositioning of Anollo command modules, the Moon-
mission-size Apollo service module, and Io_stics modules (Douglas MORL multi-
mission modules). AdditionalIy, the MORL is operational in a 28.5-degree-
inclined orbit at synchronous-orbit altitude prior to launching the telescope. The

: telescope is only one of several scientific systems operating in conjunction ""*'_ vVJ.bIl

hheMORL, and operationoftheMOT isnotthe solepurpose forplacingtheMORL

' in synchronous orbit. However, in this s_mdy attention will be focused on the
', operation of the telescope. The following sequence of vebAci_ launchings and re-

turns is postula_d to keep the telescope in operation for a typical 1-year ly_riod.
This sequence is adjusted in minor details (see the functional, analysis, Section

3.5) to fi _,the specific requirements for the analysis. A number of alt/jrnate
_ assembly sequences have been reviewed -- some inch,.ding launch of _e MORL

but, for all of them, the: requirements for operation of the MOT are relatively
1 the same.

3.1.1.1 Typical MORL-MOT Asse.mbly and Operational Secluence --
!

Tim e Launch

i Days No. Operation1
] 0 MORL is in orbit with two three-man Apollos and one multi-

mission module attached.

I 0 1 Unmanned MOT launched and rendezvoused with the MORL..• - 0 2 • One three-man Apollo CSM with one logistics multimis-
! sion module launched and rendezvoused with the MORL.I

[ If the MOT is to operate in the detached mode, a shuttle
' vehicle is included in this launching. For launch, thei
i sh:attle vehicle is located in the adapter fairing behind
I the multimission module.

• • One three-man Apollo CSM and crew deorbited from the

MORL. Each returning crew member has had 180 days
stay time in the MORL.

• If a shuttle vehicle is included in Launch 2, the multimis-
sion module is deorbited with and by the Apollo CSM and

9
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separated after a sufficicn_ reduction in velocity to en-
sure its re-cnLry into the Earth's atmosphere.

90 3 • One three-man Apollo CSM launched and rendezvoused
with the MORL.

• One three-man Apollo CSM and crew deorbited from the
MCRL. Each returning crew member has had 180 days
stay time in the MORL.

180 4 • One _hree-man Apollo CSM with one logistics multimis-
sion module launched and rendezvoused with the MORL.

• One three-maa Apollo CSM and crew deorbited from the
MORL. Each returning crew member has _had 180 days
stay time in the MORL.

The empty multimission module is deorbited with and
by the Apollo CSM and separated after a sufficient re-
duction in velocity to ensure its re-entry into the Earth's
atmosphere.

270 5 * One three-man Apollo CSM launched and rendezvoused
with the MORL.

Q One three-man Apo;1_. CSM and crew deorbited from the
MORL. Each returning crew member b,s had !80 days
stay time in the MORL.

360 6 • Oi_e i-_.-,.ee-man Apollo CSM _,.-ith one logistics multimis--
SlOn module launched and rendezvoused with the MORL

to contlnuc operation of the MORL-iCIOT combination
into the s_cor.,5 yo.ar:

One three-maa Apollo CSM and crev¢ deorbited from the

MORL. Each returning crew member has had 180 days
, stay time in the MORL.

• The empty muitimission module is deorbited with and
by the Apollo CSM and separated after a sufficient re-
duction irt velocity to ensure its re-entry into the Earth's
a_osphere.

Summary of Baseline Sequence _ For this sequence, the study:

• Assumes that MOT is a supplementary system to MORL in synchronous orbit.

• Assumes a requirement for balanced MORL-MOT configuration during tele-
scope operation.

• Provides for immediate use of MOT after rendezvous with the MORL.

_ • Requires the following number of vehicles per year for MOT operation:

10
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! MORI,

1 MOT

5 Apollos _ One Apolloand one multimissionmodule are

2 LogisticsMultimis- I forcontinuationofoperationsintothesecondsion Modules yeal.

1 Shuttle Vehicle If det_.ched mode is used.

6 Launch Vehicles Required to ,nitiate and sustain MOT for 1 year
: and leaveitinconditionfor second year opera-

t.ions._'ivelaunchvehiclesused ifsecond-year

; operationisnotreq,.:ired.

LogisticSupport---TheDmlglasMORL multimissionmodule isemploye_ as the
_. Thelogisticsvehicleand isl_unehedinconjunctionwithan Apollo ._S.,. SaturnV

payload capability of 79,600 pour_ds to syncl, ronous orbit allows the resupply cycle
to be increased to 180 days ra_er than the 90 days used for the low-Earth-orbit

study.

Fihn is resuppii_d each 90 days by including it as part of the logistics module pay-
i _' load each 180 days and as part of the payload on flights for personnel transfer.

!i 3.1.1.2 Attachment Modes _ Two modes of attachment during operation of the
MOT were consldered.

Sof_-Gimbal Mode--Operation of the MOT in the soft-gimbal mode is essentially
the same/or both the synchronous- and low-Earth-orbit cases. After docking the
MOT _rlth the I_IORL, a rigid e.ttachment is made between the MORL and the MOT
gimb,d support structure, and the boost-phase support structure for the gimbals
and spring suspension system is removed. Setup, checkout, and alignment of the
•._ ._ .q_ip-n+_,, _,,o+..... _*'_" and optical elements and preparation of the auxiliary
equipment and subsys+,ems are done during this period.

Gross positioning of the telescope is made by slewing the MOT-MORL combina-
-h.., degree of angulartion to within 0.5 degree of the target (line of sight). One _"

travel is the approximate limit of the MOT spring suspension and two-axis gimbal
system. The spring suspension and gimbal system are unlocked, and fine point-
ing is achieved using _ star-tracking sensors. The MOT attitude-control system
subsequently maintains attitude stabilization _,u.... pointing..... to the target.

Repair, maintenance, and logistics procedures for the soft-gimbal-mounted,
synchron@as-orbit telescope are similar to those for the 250-nautical-mile tele-
scope described in detail in Reference 1.

Detached Modc _ ..Whenoperating in t',e detached _-_odc, *'--,_ MOT is separatedfrom
, the MORL during observation periods. The MOT is launched and rendezvoused

with the MORL similar to the procedure for the soft-gimbal mode. Setup, checkout,

11

1966017557-020



D2-84042-2

and alignment of instrumentation and optical elements and preparation of auxiliary
subsystems are done wi_h the MOT rigidly attached to the _ORL. During opera-
tion, the MOT is separate_d from the MORL (and is physicall, free of the station)
by a distance of approxm_ately 1 mile. Pointing and attitude control of the tele-
scope is accomplished by systen:s within the MOT. When separated from the
MORL, electrical power for the MOT is furnished by a self-contained system of
solar panels and batteries. A shuttle vehicle is used for frequent short-duration
trips required between the MORL and the telescope for exchange of film, changing
of equipment operation, minor maintenance, etc. For major maintenance and re-
pair activities, the MOT is redocked and rigidly _.ttached to the MORL, providing
direct access to the MOT cabin from the MORL via _ shirts.leeve environment.

3 i. 2 Ce.,ffi_aration

The manncd ,_rbital telescope system comprises the following major vehicle
system s:

: Manned O;:bital R.esearch Laboratory (MORL)

Mapmed Orbital Telescope (MOT)

Apollo Logistics Vehicle

• Shuttle Vehicle (Detached Mode Ohly)

Conceptual designs of these vehicles, except the MORL, have been developed to
support the synchronous-orbit MOT feasibility stttdy. The MORL, Apollocom-
mand module, and Apollo service module are injecte.d into synchronous orbit by
the three-stage Saturn-V booster. This configuration has been studied by Douglas
(Reference 9).

Changes to the MORL subsystems, in addition to those previously defined for the
low-Eazth--orbit missions, to support the MOT in synchronous orbit are:

d._.1) Ad.a_'onal radiation protection for longer duration imposed by the MOT;

2) Longer stowage arms to facilitate the combination of Apollo command module,
service module, and multimission module;

3) Additional structure (possibly) in the 1VORI, docking area to accommodate the
Apollo command module and service module.

in genera!, there is no major modification required of the low-Earth-orbit MOT
configuration of Reference 1 to accomp!ish synchronous-orbit missions. Figure
3.1-2 shows a comparison of the low-Earth_- and synchronous-orbit configurations.
Differences among the configurations with respect to the star tracker and the MOT
boost support structure are not a function of orbital altitude, but are desig_ im-

; provements over the previous (low-Earth-orbit) configuration. It can be concluded
that the MORL-MOT combination for the low-Earth orbit is feasible in synchron-
ous orbit with additional radiation shielding for the film and crew in the MORL,

12
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Adapt#ItiontoLhehigher-performancelaunch_ehicleisalsorequiredforthe

s)m_.:hronous-orbitmission.

The followingsectionsdescribeconfigurationchangesrequiredforoperatingin

24-hoursynchronousorbitinsteadofthepreviouslydefined250-nautical-mile
low Earth orbit.

3.1.2.1 BaselineTelescope-- The baselinetelescope-structureconcept(Fig-

ure 3.1-3)forsynchronousorbitisessentiallythesame as for low Earth orbit.

The designobjectiveistoprovideenvironmentalprotectionand structuralsup-
portforallopticaland instrumentationsystems duringlaunchand orbitalopera-
tion. Detaileddescriptionsofthesubsysten_isand a structuraianalysisofthe

low-Earth-orbitconfigurationare describedinSection5.0 ofReference 1.

Modificationstothelow-Earth-orbitbaselinetelescopetoachievethesynchron-

ous-orbitconfigurationare listedbelow:

• The doors locatedon thefrontofthetelescopeare eliminatedas a resultof

thereducedthermaldistortionsinthehigherorbit. The Earth shade can
alsobe elimi,,atedfrom thethermalpointofview, but isretainedtomini-

mize the amount of stray light entering the telescope tube.

• The two 1000-pound rendezvous engines mounted on the aft end of the tele-
scope cabin are canted 28.5 degrees outboard with respect to the optical axis,
so that the thrust axis is passing through the telescope's center of gr__-vity

even if one engine fails. In the low-Earth-orbit configuxation, the mounting
position of these engines is limited because the telescope is positioned lower
inside the S-IVB equipment section, and the engines were mounted paraUel

to the optical axis to avoid interference between the S-IVB equipment and the
MOT rendezvous engines.

• Arrangement of star trackers for the guidance system has been modified.
This is an improvement rather than a requirement for the synchronous-orbit
mission. Two clusters of three star trackers, specified for the low-Earth-

orbit configuration, are replaced by two single star trackers; a single star
tracker is added at the forward end of the telescope. These trackers, tu-
gether with the two unchanged single trackers of the baseline telescope, pro-
vide a coverage of 360 degrees perpendicular to t_e optical axis and 90
degrees conical coverage parallel to the op_cal axis.

3.1.2.2 Soft-Gimbal Mode _ Conceptual designs of orbital and launch configura-
tio,m for the soft-gimbal mode are shown in Figures 3.1-4 and 3.1-5. These
figures show the overall vehicle size and relative size and location of the major
components and subsystems.

In the soft-gimbal mode, the concept uses a two-axis gimbal located at the MOT's
center of gravity, and the outer gimbal ring is mounted in a soft spring suspen-
sion system that provides a soft spring rate for six degrees of freedom. The

14
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J spring suspension system is mounted on an open frame truss-type structure
which is permanently attached to the MORL. Detailed descriptions of the opera-
tions and ,_tructural analysis are described in Section 5.0 of Reference 1.

Orbital Configuration --This configuration (Figure 3.1-4) is similar to the one
developed for the low Earth orbit except for the following item s:

• The Apollo service module is required (for deorbit and return to Earth) in-
stead of the smaller low-Earth-orbit service pack because greater deorbit
b,V is required.

• The Apollo and multimission modules storage iocations are rotated about the
MORL Y axis 45 degrees from the low-Earth-orbit configuration so that the
service modules will not interfere with the MORL solar panel rotation.

• The MOT support truss is replaced by a beam system. This beam system
will be jettisoned with the S-IVB stage° This config_tration p_ovides more
space around the periphery of the telescope cabin to mount equipment such
as antennas, rendezvous enginez, and propellant tanks. Furthermore, some
potential installation problems of the soft-_mbal concept have been eliminated.
Further design trade studies should be made to determine the optimum sup-
port structure.

Launch Configuration- The launch configuration of the soft-gimbal concept is
shown in Figure 3.1-5. The MOT is Installed on top of the three-stage Saturn V
booster and is enclosed by a jettisonable shroud. The shroud, which includes the

nose cone section, is jettisoned after first-stage burnout to maximize the payload
in orbit.

There are three significant differences in this configuration as compared to the
low-Earth-orbit case:

• The launch vehicle is a three-stage Saturn V instead of the two-stage Saturn
IB that is planned for the low Earth orbit. Payload capability, in addition to
the MOT, is 52,565 pounds.

• The shape of the boost shroud is similar to the one designed for the low-
Earth-orbit case, exc _t that it is 187 pounds heavier due to the difference
in launch environmen'_.

• The MOT is supported on top of a beam-type support structure at eight attach-
ment points. Separation of the MOT from the S-IVB stage is also accomplished
at these attachment points. The MOT inertial loads are transferred to the

modified Apollo LEM adapter through four support beams.

3.1.2.3 Detached Mode -- Conceptual designs of the orbital and launch configu-
rations are shown in Figures 3.1-6 and 3.1-7. These configurations show over-

all vehicle size and relative size and location of major components and subsystems.
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In _:he detached mode, the MOT is decoupled for astronomical observations. The
MOT is capable of docking with the MORL, but a shuttle vehicle is used for _lor-
real operations.

Orbital Configuration -- Figure 3.1-6 shows the orbital configuration of the MOT
when it is de_ached for astronomical observation. A shuttle vehicle is shown

docked to the telescope cabin for experiment setup and maintenance. These con-
cepts are similar to those for the low-Earth-orbit case described in detail in Sec-
:ion 5.0 of Reference 7.. Basically, the orbital configuration is essentially the

" baseline telescope with the addition of reaction control jets, propulsion equipment,
and two solar panels. Two single solar panels with an area of 132 square feet are .:
required for synchronous orbit instead of the 216-square-foot foldout panels re-
quired for low Earth orbit. Detailed descriptiohs of these subsystems are in-

cluded in appropriate sections of this document. _;

Launch Configuration- The launch configuration of the detached mode is shown
in Figure 3.1-7. The on!y changes in this configuration as compared to Figure
3. !-4 are removal of the soft-gimbal structure and addition of solar panels. The
arrangement of star trackers in the baseline telescope enables use of the same
boost shroud for either launch colffiguration.

Shuttle Vehicle --The conceptual design of the shuttle vehicle :J a!so shown in
Figure 3.1-6. T,his design is similar to the one used for the low-Earth-orbit
study. Figure 3.1-8 shows a comparison of shuttle-vehicle concepts for both
low Earth and synchronous orbits. Each of the three vehicles has the same basic
system requirements for servicing the MOT and, heiice, the only difference is the
provision of deorbit capability. "Ynis provision is not included in the baseline
shuttle vehicles for either the low-Earth- or synchronous-orbit case. It may be
desirable to add deorbit capability to _he shuttle so that emergency Earth return
would be possible if the MORL became damaged or if any malfunctions in the dock-
ing system occurred. By adding the deorbit capability, a severe weight penalty
is incurred (see Section 3.3.2.3).

Conf':_uration C of Figure 3.1-8 is the chosen baseline vehicle for this study.
This shuttle vehicle consists of crew and cargo modules. It accommodates two
men, lo_stie equipment, and supporting subsystems. The crew module is an
Apollo command module modified by removal of all structures designed for sus-
taining a crew during launch, re-entry, and landing. The heat shield is also re-
moved, thus leaving only the basic primary structure intact. The cargo module
is 100 inches long and 154 inches in diameter. This cylindrical section is per-
manently attached to the crew module, and a cargo transfer hatch is provided
between the crew and cargo modules to facilitate cargo transfer. ._

3. !. 2.4 Logistics Vehicle _ The logistics vehicle shown in Figure 3.1-9 con-
sists of a modified Apollo command module, Apollo service module, and a Douglas
multimission module. The command module is the inflight control center, crew :_
livug quarters during ascent and descent, and the re-entry vehicle during return

4
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to Earth. The service module provides supporting services (power,. environ-
mental control, etc.) for operation of the command module and the deorbit im-
pulse for returning the c,,mmand module to Earth and '_or disposing of spent
multimission modules. The multimission module provides the cargo volume and

the propulsion systen_ for the terminal rendezvous operation with the MORL.

The Apollo command and service modules are modified (from their lunar-mission
configurations) to withstand the extended space time of the MOT mission and to
interface with the MORL se as to be on a standby basis during their space stay.
These modifications were not studied but weald be essentially the same as re-

ported by Douglas (Reference 21).

Only two significant modifications are anticipated for the multimission module
configuration, One modification is to change the rendezvous engines from a 150-
pound thrust level to at least 300 pounds of thrust due to the greater mass involved.
The other modification is to add a docking cone, without an access opening, to the
lower end of the module to facilitate deorbit as i tlustrated in Figure 3.1-10. The

multimission module is shown in Figure 3.1-9 and is described in detail by Douglas
(Reference 21).

The launch vehicle for the logistics vehicle is the three-stage Saturn V. The logis-
tics multimission module is mounted on the S-IVB stage by means of a 145-inch-
long adapter section. The adapter is an aluminum skit. -stringer-frame structure
and provides the load path between the multimission module and the S-IVB stage.
A mechal_ieal attachment joint is provided at the lower and upper ends of the
adapter. The adapter remains attached to the S-IVB stage at separation.

3.2 STRUCTURAL ANALYSIS

3.2.1 Primary Structure

Elements of the primary structure for the low--Earth-orbit MOT are listed and
identified in Figures 5.2-2 through 5.2-8 or Reference 1.

Elements of the primary struc_re of the synchronous-orLit MOT are essentially
the ,same as above; differences are discussed in Section 3.1.2.2.

3.2.2 Limit Load Factors

The limit load factors given in Reference 1 are derived under the assumptions

: that thrust cutoff was instantaneous and the dynamic factor for overshoot was 2.50.

.# The analysis used to derive the limit load factors for the synchronous orbit is
based c.n a beam column (lumped mass) idealization _f the gross vehicle, its mass
distribution, and a thrust cutoff time of 0.4 second. The limit load factors for
launch eondJtion are as shown in _he following tabulation:
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T_Limit ,. aa Facto:-

Condition Z X or Y Torsior: about Z

Launch +5.6 g ±2 g 0

Stage 1 -Z. 8 g +2 g 0

Stage 2 0 fl 1C rad/sec 2

Stage 3 2.7 g .... 0

Loads are obtained by applying these load factors at the center of gravity of each
si___ficant mass item with the total Ioad being reacted at the adapter sect'on.

These load factors are used for sizing all primary structural elements.

Light structures, such as solar panels and antennas, nmst be adequate to with-
stand not only the above load factors, but must also withstand the following dy--

: namic loading conditions applied separately during launch:

1) Vibration environment according to Figure 3.2-1;

2) A reverberant acoustic field of 143 db/third oc_ve from 50 to 200 cps wilY,
10 db/octave rolloff below 50 cps and 5 db/octave rolloff above 200 cps.

: 3.2.3 Flight Load Comparison

Shear loads, bending moments, and axial load,z of the MOT, MORL, and logistics
multimission module were calculated for a low-Earth-orbit mission using the
Saturn IB l_unch vehicle and for a synchronous-orbit mission using the Saturn V
vehicle. These loads reflect the 95--percent wind criterion for which the Saturn V

is designed. All loads presented occur during maximum q in the trajectory. The
maximum q is 5400 pounds-degree/ft 2 for the Saturn V and 3500 pounds-degree/ft 2
for the Saturn lB. These loads are not sufficiently refined for a detailed struc-
tural analysis; but, they are sufficient for comparing effects of the two launch
vehicles on the payloads (see Section 3.3).

The limit shear load, bending moments, and axial loads of the MORL, the logis-
tics multimission module, and the MOT were calculated. Those for the MORL,
which are the critical ones because of the greater payload weight and vehicle
leugth, are simwn in Fig'ares 3.2-2 through 3.2-4. All loads are plotted in re-
spect to the distance forward to the S-_':.: aud payload interface; this is a reference

i cohere on to all payloads.

; 3.2.4 Compatibility of Payload with Booster
t
J

i An attempt has been ,.':ads t_ _::_ess the compatibility of the MOT system payload,
logistics vehicle, and I_ORL with the Saturn v iauilch vehicle. An absolute eva!-I

I

l uation of system con_patibility is not possible at this time because !_he strength of
the upl_r stages of the booster is unknown. The loads imposed by the Apollo

LOR sycOem are 7tmown, however, and these provide a lower limit for stage strength.
_ 33
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The loadspre._anto.dinSection3.2.3 are based on datatakeniro,r.,jioeingDocu-

ment D5--I0059,"SaturnV DesignData Book forSpace Prol;u-_,sionSystems."

Assuming theloadspresentedinD5-I0059 ar_ !il,ii_allowableloads,theratio

ofbendingmoment attheS-IVB and payloadinterfac_toallowablebending

moment and theratioofequivalentaxialloadattheinterface,Nc, totheallow-
ableaxialtoadcan be made..

Nc/NcA llowabIe BM/BM A IIowabIe

MOT 0.90 0.88

' Logistics Vehicle 0.77 0.70

MORL 1.27 1.40

From the above tabulation it is evident that the MOT and logistics vehicle are
within the above defined limit allowable loads, with the Saturn V; but, that the
MORL exceeds the above defined load limits. It must be emphasized that these

figures are conservative since the strength of the S-IVB has been conservatively
estimated. More specific statements about compatibility cannot be made until
more detailed booster-strength data is available.

3./.5 Primary Mirror

3.2.5.1 Dynamics -- The dynamic ch_ acteristics of the primary mirror in the
synchronous-orbit system are the same as those for the primary mirror of the
low-Earth-orbit MOT because the stiffness and mass distribution are the sam_.

2hese characteristics and analyses are given in Section 5.3.2.2 of Reference 1.

3.2.5.2 Stressuz --A discussion of the stress analysis of the primary mirror
is presented in Section 5.3.2.3 of Reference 1. This analysis is conseiwative for

the sy,,chronous-orbit MOT because of the lower load factors encountered during
launch with the Saturn V (to synchronous orbit) as compared to those for tim S-IB
(to a 250-nautical-mile orbit).

3.2_ 5.3 Deformation--Any deformation of the mirror degrades the optical per-
formance of the I_.'OT. Because the mirror is orbiting at zero g, any distortion of
the mirror is due to thermal gradients. An a_mlysis of this distortion is presented

: inS_,ction4.1.2.

3.3 CONFIGURATION MASS ANALYSIS

Analysis of launch configurations required to orbit and sustain the MOT system
in s_nchronous orbit indicates that the launches can easily be accomplished for
either mode of the Saturn V booster. Large weight increases over the low-Earth-b

orbit system occur due to increased radiation shielding, boost structure, and
deqrbit propellant. These increases are n_ure _an offset, however, by the greater
boost capability and the decrease in n,....._,,_-- • •, _,,,_,,_,,_,_ req:.:;-eo, ia orbit. The boost capa-
bility is large enough so that fewer launches would actually be required in
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syhchronous orbit were it not for tile desirability of rotating the. crew at 90-day
intervals and of storing film for short periods of time. The boost capability does
make it possible to eliminate one launch by adding arl Apollo vehicle to the MORL
_aunch.

This section contains an analysis of mass properties for each of the vehicles in

the MOT system. Weights of the MORL and the ferry vehicle are not included
in detail. The MORL weight for synchronous orbit has been covered by Douglas
(Reference 9), and the ferry vehicle weight will be identical to the logistics vc -
hicle without the multimission module. Thi- -,_,, �X�œu_v,u_d _,_o ._nree parts

covering each of the modes and the logistics vehicle. Mass properties for the

synchronous orbit are compared to the low-Earth-orbit mass properties in each
case.

A 20-percentcontingencyfactorhas been added totheoperationalweightsoftbe
MOT and the shuttle vehicle that does not have deorbit capability. This contin-

gency factor was also added to new hardware components in the sht,£tie vehicle
that does have deorbit capability. A lower contin.jency ,,Ao._,o_:,._._._"_...... ' io 1300
pounds) was applied to the shuttle veillcles "-:+_',,.,.....-._,.,__.... *"_ capability since this is
basically an Apollo C_ _h_+..... has experzenced considerable u_._.,$n_-'history.

3.3.1 Soft-Gimbal Mocie
t

: The mass analysis of the synchronous-orbit, soft-gimbal-mode system includes
a revision of the low-Earth-orbit co-£igaration weights so that the weights pre-

' sented are directly comparable. Design improvements that were developed iv..
the synchronous-orbit study and are also applicable to the low Earth orbit are

: reflected. Refinements resulting from ,more definition and greater depth of

i analysis are also incorporated.

3.3.1.1 Mass Analysis t'_arameters --Mass analysis of the telescope is based
on fl_,efollowing major parameters• Most of these parameters are identical to
those used in the low-Eartl,-orbit study and are repeated here for clarity•

® Inner, outer, and Earth-shade tubes of 1-inch aluminum hor,eycomb

• Thermal protection of 1-inch superinsulation over inner tube

• Beryllium primary mirror --- cell construction

e Quartz secondary mirrors --solid construction
t
]. • Main supports of titanium
l
! • ThermaUy insulated supports of fiberglass

1., • Auxiliary boost structure and bladders are ,emoved after initial rendezvous

• Inner and cuter gimbal riugb of aluminum

• MORL structural truss to gimbal mount carried aboard MOT at launch
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• Electrical power for operation provided by MORL

• Atmosphere supply, purification, and pumpdown provided by MORL

• Multipurpose mission module conceived in Boeing studies for NASA --Apollo
extension study---is used for the cabin

• Cabin is unpressurized when not occupied

• Cabin atmosphere when occupied is 50-percent N20 2 at 7 p_ia

• Tankage for consumables is sized fo" 180 days of operation

• Rendezvous-velocity requirement is 426 fps accomplished by two 1000-pound-

thrust engines with an Isp of 300.

3___:.3.i. 2 MOT Mass Analysis Details --- Two de,_ign improvements that are appli-
cable to either orbit were evolved in *he synchronous-orbit study and are reflected
=. _i,_ weights for _oth orbits as shown in Figure 3.3-1.

One improvement is the rearrangement uf star trackers to improve their field of
view; only five are no_ needed instead of the seven previously r ,.,1red. This
change requires reconfiguration of the boost shroud, which a!Iows identical shrouds
to be used in both the E_oft-gimbal and detached modes. Because of the star tracker,
_,ounted off the secondary mirror support at the forward end of the telescope, the
folding doors used in the low Earth orbit must be modified.

The other improvement is the support of _e MOT within the shroud by a rack con-
sJsti_g of four b_ams under the MOT cabin. This rack re,laces the truss that
supported the MOT through the sides of the cabin in the previous low-.Earth-orbit
study. The rack itself is heavier than the truss but, since the attachment points

of the rack to the boost adapter_ are ......,,=,_,_-lower, the increase in weight is offset by
a dec'.'ease in adapter weight. The rack provides easier separation, from the tele-
scope cabin and, therefore, can be staged with the S-IVB stage:. In the low-Earth-
orbit study, it was assumed that the rendezvous propulsioi, m_d ascent batteries

would be separated after rendezvous. With incorporation oi the rack support sys-
tem, these items are no longer removed, thus eliminating the problems of sepa-
rating a,_d deorbiting these items after rendezvous. The revised weights are
reflected in the launch mass summary in Figure 3.3-2.

The MOT structure is nearly the same for either orbit. The folding doors cover-
ing the front of the telescope are eliminated in the synchronous-orbit configuration.
The meteoroid eaviro_me_lt is s.lightly worse in syncSronous orbit due to reduction
in the Earth shielding factor. The s].ight increase in fluz has a negligible effect
on weight, however, since the cabin is unoccupied most of t},.e time and the in-

herent shieloing of the MOT is adequate for the equipment. (see Section 4.3.5).
:' The only additional radiation shielding required in synchronous orbit is that to

protect film in the cabin, the major structural weight dff__rence is the increase

in boost-shroud and adapter weights because of increased flight loads during ' .... 't._A$.k; 11

to s._u_chronous orbit (see Section 3.2). The effect of this weight increase is ._-:.m-
mized, however, since the shroud is separated at first-stage b,v___cut.

4G
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Low Synchronous
Earth Orbit Orbit

TELESCOPE OPTICS 4343 4343

Primary Mirror (2205) (2205)
Mirror 1936 1936

Inner and Outer Cylinders 164 164
Attach Bases and Tangent Bars 105 105

Support B_,se (479) (479)
Floor 129 129

Rings 44 44
B_ams 306 306

Platen Support Tube (314) (314)
Tube 97 97
Insulation 127 127

Flanges, Rings, and Door 90 90
Fc,ld!ng Mirror Assembly (171) (171)
Support Bladders (61) (61)
Primary Mirror Doors (345) (345)

Cover Doors 264 264

Frames, Hinges, and Attachments 81 81
Secondary Mirror-- f/15 (290) (290)
Secondary Mirror-- f/30 (99) (99)
Secondary Support Truss and Sleeve (86) (86)
Secondary Positioning Systems (53) (53)
Removal Mechanism-- f/15 {90) (90)
Alignment Control (150) (150)

Autocollimators 80 80
, Interferometer 25 25

Sensors and Alignment Unit 45 45

° STRUC TURE -- TE LE SC O_E 3904 3753

: Inner Tube (1473) (1473)
i Honeycomb 1115 1115

Rings and Fittings 218 218
' Outer Ring and Door Fittings i14 !14
, Light Baffles Z5 26

Outer Tube (1558) ( _558)
Honeycomb ] _90 1290
Rings and Fittings 26_ 268

g

Telescope Doors (151) (0)
Extendable Shade (523) (523)

Honeycomb Sandwich 430 430

Actuators and Mounting 80 60
. Rings and Fittings 33 33
i

i

Figure 3.3-1: MOT OPERATIONAL MASS--GIMBAL MODE
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Figure 3.3-I (Cont.)

Low Synchronous
Earth Orbit Orbit

Shade Guide Frame (119) (119)

Crew Restraint and Positioning (40) (40)

Sensor Support Frame (40) (40)

STRUCTURE -- CABIN 2a94 2694

Cabin- Telescope InLerface (393) (393)
Outer Wall Attachment 52 52

Six-Bar Truss 27 27

; Support Tube Connection 14 14

Platen and Fittings 228 228

Indexing Structure and Mech:¢nisms 72 72

Bulkheads (1351) (1351)
Waffle Structure 713 713

Radial Beams 244 244

Intermediate Ring 82 82

Inner Ring and Tunnel _3 63

Seal Ring and Seal 99 99

Fittings and Attachments 150 150

Cylinders (503) (503)
Cylinder Skin 310 310

Internal Columns 163 163

Central Head Ties 30 30

Penetrations and Seals (85) (85)

Subsystem Support Beams (72) (72)

Console Structure (35) (3 5)

Seat, Locomotion, and Restraint (40) (40)

STRUCTURE -- GIMBAL '_'('HANISMS..,_..,_ 581 581

Gimbal Mechanisms (279) (279)
Outer Gimbal Ring 103 103

Inner Gimba! Rin_" 99 99

Gimbal Bearings 36 36

Coil Sprir.gs 12 12

:_ Actuators and Guides 29 29

Gimbal Truss Structure (178) (178)
Support Rings 105 105

Truss Members 41 41

S_3pport Frames 22 22

MOT-MORL Support Truss (124) (124)
Truss St.ructure 82 82

Fittings and Attachments 42 42

?

42

1966017557-057



D2- 84042- 2

Figure 3.3-1 (Cont.)

Low Synchronous
Earth Orbit Orbit

THERMAL PROTECTION 2912 2912

Inner Tube Insulation (1922) (1922)
Shade Insulation (352) (352)
Primary Mirror Insulation (372) (372)
Platen Support Tube Insulation (92) (92)
Cabin Insulation (84) (84)
The rmal Coatings (90) (90)

ELECTRICAL POWER 405 405

Battery Installation (127) (127)
Ag- Zn Batteries 110 110
Installation Provisions 17 17

Regulators (23) (23_
Inverters (60) (60)
Distribution System (195) (195)

REACTION CONTROL SYSTEM 145 120

Engines (40) (40)
Propellant Tanks mid Residuals (28) (8)
P_-essurizatiou System (7) (2)
Valves, Plumbing, and Fittings (55) (55)
Wiring (15) (15)

ATTITUDE CONTROL AND STABILIZATION Ii37 i011

Sensors (249) (249)
Sun Sensors 3 3

Gyro Package 16 16
Star Trackers 120 120

Intermediate Pointing 50 5o
Fine Pointing 60 60

E!ectronic s (528) (528)
Digital Computer 290 290

, Star Tracker 138 138
• Analo_ Comn,_,_e- 50 50

C MG Electronics 45 45
i Se_._.,sorGyro Eieetronic_, 5 5

Control Moment Gyro _oovj...... _
v AxI_ 30 54
Y Axis 165 90
Z A._i.q 165 99

' 43
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- --- Figure 3. 3-1 (Cont,)

Low Synchronous
Earth Orbit Orbit

COMMUNICATION AND DATA MANAGEMEN" 58 58

Telemetry (21) (21)

Vidicon Cameras (12) (12) -

VHF Systen, (19) (19)

. Voice Transponder (6) (6)

ENVIRONMENTAL CONTROL AND LIFE SUPPORT 238 238

-_t mosphe re Control (37) (37)

_ieat Transport (66) (66)

Pumps, Accumulators, and Controls 10 10
Colu Plates and HX 30 30

Plumbing and Coolant 26 26

Emerg2_ :y Repressurization (90) • (90)

Gaseous Oxygen Tanks 39 39

: _Gaseous Nitrogen Tanks 38 38

Plumbing and Controls 13 13

Radiator (45) : (45)
, Tubes and Headers 21 21

Fluid System 24 24

RE NDE Z VOUS PROPU LSION 200 185

Engines (80) (80)

Propellant Tanks (58) (49)

_ Pressurization _:stem (40) (34)

Line ;, Fittings, and Valves (22) (22)

EXPERIME NTS -- f/15 454 454

I.ow-Dispersion UV Spectrometer (49) (49)

Low- Dispersion Spectrograph (54) (54)

J High-Dispersion UV Spectrometer (122) (122)

Wide- Field Camera (218) (218)

Vidicon Camera (11) (11)

Wiring (20) (20)

EXPERIMENTS _ f/30 942 942

Thermoelectric Photometer (24) (24)

Photoelectric Photometer (63) (63)

Higil- Dispersion IR Spectrometer (188) (188)

High-Dispersion Spectrograph (440) (440)

Large- Sc ale C ame ra (186) (186)

Vidicon Camera (11) (11-)

intermittent Recorders (30) (30)

Wiring (35) (35)
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-- Figure 3_3-1 (Cont:) -

Low Synchronous
Earth Orbit Orbit

EXPERIMENT CONTROL SENSORS 495 495

Pointing Se_nsor.q (305) (305)

intermediate _?ointing 100 10C

Photometry Pointing 55 55

Low-Dispersion Pointing 60 60

High-Dispersion Pointing 90 90

Photo Sensors (110) (110)
Star- Field Photo 40 49

Planetary Photo 30 30

Planetary Spectrography 40 40

Translation Mechanisms (35) (35)

Wiring (45) (45)

EXPE NDAB LE S 476 322

Film (126) (252)

Film Radiation Protection (110) (0._

Propellant (! 75) (57)

EC/SL Expendables (55) (55)

Sensor Coolants (Average) (10) (10)

SPARES 360 360-

CONTINGENCY (20_) 3,867 3 t 771

TOTAL OPERATIONAL MASS 23,211 22,644

.,-_. "_

i

l
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.................... Low Synchronous
Earth Orbit Orbit

Telescope Optics 4,343 4,343

Structure- Telescope 3,904 3,753

Stracture-- Cabin 5, _c_a o _,_

Structure -- Gimbal System 581 581

Thermal Protection 2,912 2,912
Electrical Power 405 405

!

Reaction Control System 145 120
: Attitude Control and Stabilization 1,137 1,011

Communication and Data Management 58 58

Environmental Control and Life Support 238 238

Rendezvous Propulsion 200 185

, Experiments- f/15 454 454

Experiments- f/30 - 942 942

Experiment Control Sensors 495 495

• Expendables 476 322

- Spares 360 360
Contingency 3, 867 3,771

Total Operational Mass 23,211 22,644
D,,_._g Propellant 120 120
Rendezvous Propellant 1,045 900

Start Rendezvous 24,377 23,664
S-IV and MOT Interstage 1,592 1,610
MOT Support Rack 828 828

Staging Orbit Mass 26,797 26,102

: Effective Fairing Mass 631 789
Effective Nose Cone Mass 117 146

EFFECTIVE LAUNCH MASS 27,545 27,037

CAPABILITY 36,000 79,600

EXCESS +8,455 +52,563

b

Figure 3.3-2: MOT LAUNCH MASS SUMMARY--GIMBAL MODE
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Electrical-power-subsys_m weights are the same for either orbit. This subsys-
tem is required for the boost phase only and its size is, therefore, dependent on
the time required to reach the orbits. :,'ime spent in parking orbit for the low-
Earth-orbit configuration would affect the ba'.tery weight; but, for purposes of

: comparison, it was assumed that time to orbit would be the same for either orbit.

The reaction-control-subsystem weight differs only in the amount of propellant
and tankage required. The propellant tanks for the low Earth orbit are sized to
contain a 90-day supply (see Section 3.3.3) while a 180-day supply is contained
in the synchronous-orbit configuration. Tanks for both configurations contain
propellant for initial docking (35 pounds). Attitude-control propellant require-
ments are very low in s)mchrono-s orbit (see Section 4.2).

The only weight difference in the attitude-controi-and-stabilization subsystem is
in the control-moment-gyro weight. The low-Earth-orbit configuration weights
have been updated to include the weight of a digital computer that was inadverte:,tly
omitted in the previous report.

The rendezvous-propulsion subsystem for synchronous orbit is identical to that
for the low Earth orbit except for the amounts of propellant, pressurant, and
tankage required. The synchronous rendezvous requirements are iess than those
of low Earth orbit because the S-IVB injects the ",'ehicle into orbit m a function
performed by the propulsion subsystem in low Earth orbit. Velocity requirements
are 426 and 475 fps, respectively, for the synchronous and icw Earth orbits.
These figures include an allowa_ce of 50 fps for docking; this velocity is attained
using the reaction control system. The low-Earth-orbit total ,'endezvotls-velocity
requirement was increased from the previous study value of 380 to the above value
of 475 fps to reflect a value comparable to the synchronous-orbit requirement.

Experiment weight in synchronous orbit remains unchanged from low-Earth orbit.
the low-Earth-orbit exp_.riment weights have been increased to include intermit-
tently operati,_g tape recorders.

Expendable weights reflect a 180-day supply of consumables for the synchronous
orbit and a 90-day supply for the low Earth orbit. The 90-day supply period re-
flects a change from the previous study and is explained in Section 3.3.3. The
initial supply of film is also an addition to previously reported weights.

The initial supply of spares, estimated as a 1-year requirement, is included.
Spares are replaced by the logistics vehicle as they are used.

Subsystems not included in the precoding discussion have not changed from the
previous low-Earth-orbit study.

Weight for reserves, allowances, and contingency is consistent with thc policy
established in the low-Earth-orbit study-.
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3.3.1.3 Orbit Configuration Mass Properties --Approximate mass properties
- for tile soft-gimbal mode are shown in Figure 3.3-3 and include the center of

_-avity. center of pressure, and n_ass moments of inertia. These data were esti-
mated near the .¢tart of the synchronous-orbit st 4y for use in determining atti-
tude and stabilization control rermiromon_ _,_ _*,..... ;_.,_ _1. .......... -.................. -s,'_o o,,,.,_v_hiv, mereiore,
not consistent _ith those shown ie the preceding se,:tion. The effect of the re-

finements in weight on the remainder of the mass properties is small and, there-
, fore, no iteration was made. The following parameters were used in establishing

the mass data:

• ?,lass properties for MORL without external vehicles were obtained from
Douglas Aircraft Company (Reference 16) for low Earth orbit

• The weights used for external vehicles (Apollo and cargo modules) are:

Apollo CM _ 10,387 pounds both orbits

Apollo SM _ 20,958 pounds synchronous orbit only; includes
12,508 pounds of propellant for

re -entry

Modified SM --2640 pounds low Earth orbit only; includes 1270
pounds solid retropack for re-entry

Cargo Module -- 8300 pounds both orbits

................ •,_ m _,_ o_u_ _e service module power subsystem would

consist solely of batteries, and atmosphere storage would be accomplished
with a high-pressure gaseous system. Systems and supplies are adequate
for transit between Earth and MORL only.

• Three-man command modules with a 180-day crew-rotation period.

• Additional MORL radiation protection for synchronous orbit (14,200 pounds)
was obtained from Douglas (Reference 9) and includes a biowell. It was
assumed that equipment in MORL would be relocated so that the center of

gravity would be the same as the low-Earth-orbit MORL, and the moments
of inertia would be in proportion to weight.

• The Apollos and cargo modules are rotated about the X axis 45 degrees from
the low-Earth-orbit colffiguration for the synchronous orbit so that the serv-
ice modules will not interfere with solar-cell-panel rotation. These modules

lie on the principal axes in the synchronous--orbit configuration.

• The effect of weight differences as a result of differences in attitude-control,
power, or other subsystem requirements between the two orbits is not included.

• It is desirable to maintain the same center of gravity of the MORL configura
tion, including external vehicles, for both the low-altitude and synchronous
orbits so that the telescope gimbal design will be the same for both configura-
tions. This necessitates retracting the Apollo docking booms about 40 inches
when the Apollos are stowed for the synchronous-orbit configuration.
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3.3. _. Detachc4 Mode

Many of the mass analysis parameters and mass characteristics of the MOT are
common in both modes a_d have been discussed in Section 3.3.1. The discussion

of mass analysis of the detached mode, therefore, will be confined to items that
are peculiar to this mode.

3.3.2.1 Mass Analysis Parameters _ The following parameters apply to the
detached mode only:

• Direct entry from shuttle to the MCT cabin without airlock.

• Pumpdown power share_t with shuttle.

• Pumpdown system and cooling supplie_J by the _IOT.

• Pumpdown gaseous storage at 500 psia provided by shuttle.

• Electrical power supplied by articulated solar panel_, fixed in position dur-
ing telescope operation, plus silver-cadmium bat+_eries.

• Expendables and storage capability for 180-day operation resupplied by dock-
ing to the MORL.

3.3.2.2 MOT Mass Analysis Details -- Figures 3.3-4 and 3.3-5 present opera-
tional weight and sequential launch weight respectively for the MOT detached
mode. "]:he foilo.Ang discussion describes the weig_¢ changes that are required
for the detached mode _:_addition to those that are applicable to both modes.

The meteoroid-bumper weigh_ of the MOT c_bin was increased in weight _lightly
to reflect the increased meteoroid f!ux in synchronous orbit, which results from
the decreased Earth blockage factor. '£his bumper covers the aft end of the MOT
cabin, which is protected by MORL in the gimbal mode.

The electrical power subsystem is reduced in synchronous orbit because of the
small amount of time that the solar panels are shaded from the Sun by Earth.

The reaction control subsystem is lighter for the detached mode in synchronous
orbit than for low Earth orbit because of the reduced disturbance environment.

The systems are larger than for the gimbaled mode since control must be attained
without aid from the MORL and because repeated dockings with the MORL are re-
quired. Section 3.3.3 describes the logistics required for each mode.

3.3.2.3 Shuttle-Vehicle Mass Analysis -- Figure 3.3-6 shows the shuttle-vehicle
weights for the MOT detached mode in both low Earth and synchronous orbits for
tim three shuttle concepts described in Section 3.1.2. The eenterline approachb

for both orbits is a shuttle vehicle without deorbit or abort capability. This ve-
hicle will be identical for both orbits and consists of a stripped Apollo command
module with an attached cargo module. It may be desirable, however, to add
deorbit capability to the shuttle so that abort would be possible if the MORL

5O
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Low Synchronous

Earth Orbit Orbit

n_-,_._ _,_,.,,_,o,_,-,_.v.r_ OPTIC 8 4343 4343

Primary Mirror (2205) (2205)
Mirror 1936 1936

Inner and Outer Cylinders 164 164

Attach Bases and Tangent Bars 105 105

Support Base (479) (479)
Floor 129 ] 29

Rings 44 44
Beams 306 306

Platen Support Tube (314) (314)
Tube 97 9 '7

Insulation 127 12 7

Flanges, Rings, and Door 90 90

Folding Mirror Assembly (I71) (i71)

Support Bladders 61 61

Primary Mirror Doors (345) (345)
Cover Doors 264 264

Frames, Hinges, and Attachments 81 81

Secondary Mirror-- f/15 (290) (290)

Secondary Mirror-- f/30 (99) (99)

Secondary Support Truss and Sleeve (86) (86)

Secondary P_sitioningSystems (53) (53)

Removal Mechanism-- f/15 (90) (90)

Alignme nt Control (150) (150)
Autocollimators 80 80

Interferomete r 25 25

Sensor and Alignment Unit 45 45

STRUCTURE -- TE LE SCOPE 3880 3729

Inner Tube (1473) (1473)
Honeycomb 1115 1115

Rings and Fittings 218 218

Outer Rings and Door Fittings 114 114

Light Baffles 26 26

Outer Tube (1534) (1534)

Honeycomb 1290 1290
Rings and Fittings 244 244

Telescope Doors (151) (0)

Extendable Shade (523) (523)
Honeycomb Sanawich 430 430

Actuators and Mounting 60 60

Rings and Fittings 33 33

i Figure 3.3-4: MOT OPERATIONAL MASS--DETACHED MODE
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Figure _. 3-4 (Cont.)

Low Synchronous
Earth Orbit Orbit

Shade Guide Frame (119) (119)

Crew Restraint and Positioning (40) (40)

Sensor Support Frame (40) (40)

STRUCTURE -- CABIN 2847 2853

Cabin and Telescope Interface (393) (393)
Outer Wall Attachment 52 52

Six-Bar Truss 27 27

Support Tube Connection 14 14

Platen and Fittings 228 228

Indexing Structure and Mechanisms 72 72

Bulkheads (1389) (1389)
Waffle Structure 792 792

Radial Beams 244 244

Intermediate Ripg 82 82

Inner Ring and Tunnel 63 63

Seal Ring and Seal 58 58

Fittings and Attachments 150 150

Cylinders (503) (503)

Cylinder Skin 310 310

Internal 163 163

Central Head Ties 30 30

Hatch, Penetrations, and Seals (105) (105)

Docking Structure (195) (195)

Subsystem Support Beams (123) (123)

Console Structure (35) (35)

Seat, Locomotion, and Restraint (40) (40)

Meteoroid Bumper (64) (70)

THERMAL PROTECTION 2932 2932

Inner Tube Insulation (1922) (1922)

Shade Insulation (352) (352)

Primary Mirror Insulation (372) (372)

Platen Support Tube Insulation (92) (92)

Cabin Insulation (84) (84)

Timrmal Coatings (110) (110)

ELECTRICAL POWER 1437 921

Solar Panels (324) (196)
Cells, Wiring, and Cover Glass 166 100

Substrate Structure 62 37

Beams and Actuators 57 34

Extension System and Supports 39 24
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Figure 3.3-4 (Cont.)
Low Synchronous

Earth Orbit Orbit

Battery Installation (593) (212)
AgCd (Low), AgZn (Synchronous) Batteries 545 195
Installation Provisions 48 17

Regulators (75) (75)
Inve'-ters (180) (180)
Battery Charge rs (15) (8)
Distribution System (250) (250)

REACTION CONTROL SYSTEM 165 179

Engines (40) (40)
Propellant Tanks and Residuals (48) (59)
Pressurization System (7) (10)
Valves, Plumbing, and Fittings (55) (55)
Wiring (15) (15)

ATTITUDE CONTROL AND STABILIZATION 1137 1011

Sensors (249) (249)
Sun Sensors 3 "2
Gyro Package 16 1
Star Trackers 120 120

Intermediate Pointing 50 5,,
Fine Pointing 60 60

Electronics (528) (528)
Digit_] Cnmputer 290 290
Star Tracker 138 ./ 138
Analog Comp'Jter 50 50
C MG Electronics 45 45
Sensor Gyro Electronics 5 5

Control Moment Gyro (360) (234)
X Axis 30 54
Y Axis 165 90

Z Axis 165 90

COMMUNICATION, TRACKING, AND DAT.&
MANAGE MENT 123 123

Telemetry (21) (21)
Vidicon Cameras (12) (12)
VHF System (19) (19)
Voice Transponder (6) (6)
Rendezvous Radar (30) (30)
Antennas, Cables, and Wiring (35) (35)
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Figure 3.3-4 (Cont.)

Lc,v Syachronous
Earth Orbit Orbit

ENVIRONMENTAL CONTROL AND L1FE SUPPORT 523 523

Atmosphere Co;ltrol (22) i,),,,
Atmosphere Recovery (148) (148)

ComDres_-_t 120 120

Coolers and Plumbing 28 28

- Heat Transport (81) (81)

: Pumps, Accumulators, an.: Controls 12 12

Cold Plates and Heat Exchanger 35 35

Plumbing and Coolant 29 29

Emergency Repressurization (90) (90)
Gaseous Oxygen Tanks 39 39

Gaseous Nitrogen Tanks 38 38

Plumbing and Controls 13 13

R adiator (182) (182)
Tubes and Headers 84 84

c

: Fluid b_'stem 98 98

RE NDE ZVOUS PROPULSION 202 187

.... Engines : (80) (80)
: Propellant Tanks : (59) (50)

Pressurization System - (41) (35)

Lines, Fittings, and Valves __ (22) (22)

EXPE RIME NTS -- f/15 454 454

Low-Dispersion UV Spectrometer (49) (49)

Low- Dispe rsion Spectrograph (54) (54)

High-Dispersion UV Spectrometer (122) (122)

Wide- Field Camera (218) (218)

Vidicon Camera (11) (11)

Wiring (20) (20)

EXPERIMENTS- f/30 942 942

Thermoelectric Photometer (2_) (2 _)

Photoelectric Photometer (63) (63)

High- Dispersion IR Spectrometer (188) (188)

Iiigh-Dispersion ,_pectrograph (440) (440)

Large-Scale Camera (186) (186)

Vidicon Camera (11) (11)

Intermittent Recorders (30) (30)

Wiring (35) (35)

54

1966017557-072



D2- _4042- _.

Figure 3.3-4 (Cont.)

Low Synchronous
Earth Orbit Orbit

EX PE RIME NT C ONTROL SE NSORS 495 495

Pointing Sensors (305) (3057

Intermediate Poiuting 100 100

Photometr_ Pointing 55 55

Low-Dispersion Pointing 60 60

High-Dispersion Pointing 90 : J

Photo Sensors (I 107 (ii0)
Star- Ficld Photo 40 40

Planetary Photo 30 30

Planetary Spectrography 40 40

Translation Mechanisms (357 (35)

Wiring (45) (4_)

EXPENDABLES 794 931

F.,lm (126) (252)

Film Radiation Protection (1107 (07

Propellant (483) (604)

Environmental Control and Life Support Expendables (65) (65)

Sensor Coolant s (Average) (10) (10)

SPARES 452 452

CONTINGENCY (20 ,_,) 4143 _011

TOTAL OPERATIONAL MASS 24,869 24,086

L

1 55!
!

1966017557-073



D2- 8.t042- 2
.)

i,ow SYneh,:onous
Earth Orbit Orbit

Telescope ()pties 4,343 4,343

Structmc- Telescope 3,880 3,729

Stt'ucture-- Cabin 2.847 2,853

Thermal Protection 2,932 2,932

Electrical Power 1,437 921

Rcaction Control System 165 179

Attitude Control and Stabilization 1,137 1,011

Communication and Data Management 123 123

Enviro,.nental Control and Life Support 523 523

Rendczvous Propulsion 202 187

Exper_ merits -- 1/'15 454 454

E xpc ri mcnts _ !/30 942 9 42

Experiment Control Sens_,r_ 495 495

Expendables 794 931

gpares 452 452

Contingency 4,143 4,011

Total Operational Mass 24,869 24,086

Docking Propellant 120 120

Rendezvous Propellant 1,126 944

St.,rt Rund_zvous 26,115 25,150

S-IV and RIOT Interstagc 1,592 1,610
_tC)T._,,n,,_,_Rack 828 828

Staging Orbit Mass 28,535 27,588

g ffective Fairing Mass _°'_,* 789

Effective Nose Cone Mass 1!7 1_3

E FFECTIVE LAUNCH MASS 29,283 28,523

CAPABILITY 36,000 79,600

FXCESS +6, 71.7 +51,077

Figure 3.3-5: MOT LAUNCH MASS SUMMARY--DETACHED MODE
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Abort Capability Abo_ Capability
No Abort from from

_C,_it__ Low-Earth Orbit Synchronous Orbit

CREW MODULE (4,200) (9,675) (9,675)

Structure 1,860 4,870 4,870
Crew Systems 230 230 230
Electrical Power 410 510 510

C ommunic ations 120 370 3 70

Envir)nmental Control and Life Support 360 360 360

Controls, Displays, and Instrumen-
tation 160 510 510

Navigaiion and Stability Control 110 620 620
MOT Maintenance Provisions 30 30 30

Docking System 190 190 190
Environmental Control and Life

Support Expendables 110 165 165
Penetrations and Leaks 50 50 50

Crew and Equipment 570 570 570

Reaction Control 0 600 600

Earth Landing System 0 600 600

SERVICE AND CARGO MODULE (2,300) (5,540) (26,860)

Structure 1: 22n 1,799 2,210

Reartie:: ,.,un_ ol and Propm_ioa 160 445 4,456

Atmosphere Storage S::s_em 270 270 270

MOT Stored Atmosphere 150 150 150

Subsystems 0 800 1,784

Shuttle Propellant 500 1,060 2,425

Abort Propellant 0 1,025 15:565

C ONTINGE NC Y (1,300) (i,300) (i,300)

TOTAL SHUTTLE VEHICLE 7,800 16,515 37,835

Figure 3.3-6: SHUTTLE VEHICLE WEIGHT
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became damaged during the shuttle operation or if rcndczvou_ with the MORI,

couhl not I)e accomplished. By adding deorbit capability, ,'t severe weight penalty

is incut:e(l. The added weigi_t falls in three categories:

1) The crew-module structure and subsystems must be made capable of z'e-entry;

2) .\ rett'ograde propulsion module must be added;

J) Shuttle propellant must be increased to carry the above changes.

When deorbit capability is added, a large difference between shuttle ,_,ehicle

weight for low Earth orbit and that for synchronous orbit can be seen. it should
be noted that none of the three vehicles is optimcm from a weight standpoint be-

cause the 3"make maximum use of e_sting Apollo h:_rdware. OptimizaLion of

structure, heat shiekl, propulsion, and subsystem wauld reduce the weight of

each vehicle.

The following major parameters have been used .o determine mass requirements
of the shuttle vehicle:

* The sh-'._le is designed for 15 round trips _MORL to MOT to MORL --re-

quiring 15 repressurization cycles of the MOT. Refurbishment is required

after 15 round trips.

* Maximum of 1-mile Mo'r-MORL separation.

* Nominal two-man crew, with overload capability of three.

* Crew-module atmosphere of 50-percent 0 2 and 50-percent N 2 at _ psia.

* Cargo module unpressurized.

• One emergency repressurization of crew module stored aboard.

• Storage capability for 90 percent of MOT recovered atwosphere at 500 psia.

• Atmosphere makeup for 10-percent MOT atmosphere makeup, stored at 3500

psia, for each repressurization cycle.

• No MOT propellant resupply capability- this is a requirement of MOT-

M ORL docldng operation.

• Cargo module cylindrical wall integl-ated with redundant tube radiator.

• Batteries sized for providing 4000 watthours at 80-percent depth of discharge

for shuttle use. Re-entrj batteries, if required, equivalent to ferry vehicle

requirements.

• Apollo servicv module offloaded for synchronous deorbit with a deorbit _V

capability of 5200 fps in addition to shuttle requirements.
b

• Shuttle propulsion _V capability of 650 fps.

• Cargo module staged prior to deorbit for low-altitude configuration and inte-

grated with the service module for the synchronous-orbit configuration.
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• Weight contingency of 20 percent is allowed for vehicles without deorbit capa-
bility. This same amount (1300 pound_s) is used for the other configurations.
While these other configurations are heavier, they are comprised of hard-
ware that is mo--'e fully developed,

3.3.2.4 Orbit Configuration Mass Properties -- Differences between mass
properties for the detached-mode MOT configuration in low Earth and synchronous
orbits are not large enough to be significant with regard to attitude stability-and-
control requirements, considering the stage of design. Therefore, the same
properties reported in the low-Earth-orbit study (Reference 1) are applicable.
Slight differences caused by the difference in MOT weight and solar panel size
will be detectable in later stages of design. MORL mass properties will be
similar to those given for the soft--gimbaI mode in ,Section 3.3.1.3.

3.3.3 Logistics Vehicle

This section contains a comparative evaluation of the MOT logistic vehicle weights
for the gimbal and detached modes in low-altitude and synchronous orbits. Sum-
mary weights are presented according to the arrangement of major components at
launch. For a more detailed comparison, the weights have been grouped in the
categories of structure, propellant, atmosphere, and dry cargo.

I

3.3.3.1 Conclusions--The logistics vehicle weight requirements for the syn-
chronous orbit are less severe with regard to booster capability than for the low
Earth orbit, primarily because of the increased booster capability and decreased
propellant cargo requirements for synchronous orbit.

The logistics supply cycle for the low Earth orbit shon!d coincide with crew-
rotation launches _t 90--da_ h-tervals. The synchronoqs--_rbit logistic launches
are needed only at every other crew-rotatmn launch, i.e., at 180-day intervals.

3.3.3.2 Mass Analysis Parameters --The following parameters have been used
to derive the mass of the logistics requirements based on a 1-year period.

Parameters Common to Both Modes

• 71 fiim replacement periods of 3 hours each.

• 10 setup and checkout periods of 7.5 hours each.
Q

• 4 scheduled maintenance periods of 3 days each.

• 1 scheduled 4-day period for f/15 to f/30 changeover.

• 15 unscheduled maintenance periods of ] day or less.

• 0.30 lb/hr MOT atmosphere leakage rate.

• 2.5 lbs per man-day metabolic oxygen rate.
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• (2onlnland module dcorbit AV for low Earth and synchronous orbits
are 5()0 and 5200 fps, respectively.

• Multimission module deorbit AV for low Earth mad synchronous orbits
t')are 190 and 500(1 t 1. s. respectively

• Service module propulsion I is 305.sp

• Multimission module propulsion Isp is 290.

• Command module weight is based on a minimum modified Apollo
vehicle.

• Weight contingency is included at the rate of 20 percent on new hard-
ware, excluding cargo and propellant. Calculations of propellant and
cargo include contingency allowances.

• Logistics requirements for MORL are according to Douglas reports
(Reference 21). Multimission module weights are also derived from
this source.

• Fihn is resupplied at 90-day intervals (coinciding with crew rotation)
to limit fogging by radiation.

Parameters fsr Gimbal Mede Onlsr

• Emergency atmosphere repressurization by MORL, four per year
estimated, required for high-leak loss (dump) of cabin atmosphere.

Parameters for Shuttle Mode Only

• 2-hour average shuttle travel time per docking cycle - two mer,.

• 1-hour average shuttle checkout and maintenance time per docking
cycle - one man.

• 1-hour shuttle holding time for MOT pumpdown - two men.

• Spares replacement mass increased (over the gimbal mode) by elee-
trical power equipment and by orbit control equipment.

• Emergency atmosphere for one complete repressurizat'on stered in
both the MOT and tne shuttle, four replacements per year estima'ccd
for MOT plus one while coupled to MORL _two replacements per
year for shuttle.

• '_',uttle atmosphere leakage rate of 0.25 lb/hr.

• 1-year battery lifetime, replacement has not been included in the
l-year logistics provisions.

;3.3.3.3 Mass Analysis Details _ Logistics vehicle weights differ markedly
between low Earth and synchronous orbits. The cargo requirements for low
Earth orbit are higher because of the requirements for attitude control _md sta-

tion and orbit keeping propellant. Conversely, propellant req'aired to deorbit
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both the command and multimission modules is much larger for the synchronous
orbit. In terms of feet per second required, the requirements for deorbit differ
by more than an order of magnitude. The overriding influence with regard to
mission accomplishment is booster capability. The Saturn-V t apability i17byn-
chronous orbit is nearly twice that of the Saturn IB in low Earth orbit. These
factors enable a 180-day resupply cycle in ssamhronous orbit while the low-Earth-
orbit resupply cycle is confined to 90 days. In either ease, the number of launches
required remains the same since a crew rotation schedule of 90 days has been
assumed. Figure 3.3-7 is a weight summary that illustrates the effect of orbit
altitude on both modes and the effect of time on the low-Earth-orbit vehtcle. The

following paragraphs discuss weight differences between orbits in more detail.

Structure --Structure weight, as shqwnin Figure 3.3-8, differs between the con-
figurations for low Earth and synchronis orbits for the following reasons:

• Heavier service module structure is required to contain the additional pro-
pellant required.

• An additional adapter section is required between the service module and the
multimission module due to the size of the service module engine.

• Multimission module outer cylinder is heavier because:

1) The payload above the cylinder is greater because of the larger service
module;

2) The flight load bending moment is greater as a result of the longer con-
figuration and boost-vehicle characteristics (see Section 3.2).

A slight compensating reduction exists because of the lesser acceleration
loads imposed by the Saturn V as compared to the Saturn IB.

• Multimission module meteoroid shielding is slightly heavier since the meteor-
old flux blockage by Earth is much less at synchronous-orbit altitude.

• Multimission module adapter weight is heavier for the same reasons that the
multimission module cylinder is heavier.

• An additionM docking port is required on the multimission module in synchron-
ous orbit to facilitate deorbiting. In synchronous orbit, the multimission
module is deorbited by the Apollo service module, whereas the low-Earth-
orbit configuration contains its own propulsion system for deorbit.

Propellant _ Propellant requiremepts for the low-Earth- and synchronous-orbit
configurations, as shown in Figure 3.3-9, differ for the following reasons:

• Command mc,dule deorbit-_V requirements are about 5200 fps for the syn-
chronous-orbit configuration compared to 190 fps for the low-Earth-orbit
configuration.

• Multimission module deorbit-_V requirements differ by about the same arr ount
as the command module, and cmorbit is accomplished by the service module for
syn,zhronous orbit as compared to using the multimission module propulsion
system for deorbit in the low-Earth-orbit configuration.
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Item Low Orbit Synchronous Orbit

Service Module !824 8,450

(Includes Subsystew, s)

Service Module Adapter 0 755

Multimission Module 866 1,485

Outer Cylinder

Multimission Module 817 817

Pressurized Section

M ultim i s sion M odule 0 57

Second Docking Port

Multimission Module 180 198

Meteoroid Shielding

Multimission Module Adapter 745 1,115

Total 4432 12,877

Figure 3.3-8: LOGISTICS VEHICLE STRUCTURE WEIGHT

Low Orbit Synchronous Orbit
Gimbal Detached Gimbal Detached

Service Module Propellant (816) {816) (17,388) (17,638)

CM Deorbit 816 816 13,168 13,168

MMM Deorbit 0 0 4,220 4,470

MMM Propulsion (4,iii) (4,111) (2,570) (2,655)

Ascent and Rendezvous 2,090 2,090 1,750 1,815

Deorbit 840 840 0 0

Propulsion Inerts 1,181 1,181 820 840

Cargo Propellant (7,950) (7,005) (1,617) (3,414)

MORL 3,170 3,170 900 900

MORL Caused by MOT 3,335 463 332 0

MOT 350 967 5 604

Shuttle 0 J, 440 0 1,440

Tanks and Lines 1_ 095 965 225 470

Total 12,877 11,932 21,5'75 23,707

Figure 3.3--9: LOGISTICS VEHICLE PROPELLANT AND STORAGE WEIGHT

(180 Days)
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• Ascent mid rendezvous propellant is different because:

1) In low orbit, all requirements are satisfied by the multir, ission module
propulsion system, while the S-IVB stage provides the requirements up
to and including orbit injection for synchronous orbit;

2) The synchronous-orbit rendezvous and docking propellant ,veight is
greater because the mass is greater.

• Propellant supplied to MORL in the form of cargo is much less for ti,c syn-
chronous orbit because of lesser disturbances (orbit keeping, gravity gradient,
etc. ).

• Cargo propellant required because of MOT is tess for synchronous orbit for
the same reason as the MORL requirements.

* Shuttle propellant is the same for both orbits.

Atmosphere and Storage --Atmosphere and storage weight, as shown in Figure
3.3-10, does not differ between orbits. A differer,.ee between modes, however,
is shown since shuttle requirements must be added to the detached mode. The
same number of trips into the MOT cabin and the same number of man_hours have
been assumed for both orbits. '['his assu -_g_:o:, i,_ based on the increased observa-
tion time for the synchronous crbit k,eing accommodated by increasing the quantity
of film and tape transferred or, each trip.

Dry Cargo _ Dry-cargo weight is shown in Figure 3.3-10. The :)nly weight dif-
ferenee betwe_m orbits is an increase in film and tape for the ::'e .ter observation

time in synchronous orbit. P_.-, _nal supplies, including food, :,,i not vary. The
difference in subsystems is _. _ slight and, therefore, the diife.: ace in replace-
meet _pares is not discerr, ible. It was assumed that 80 percor f the initial sup-
ply of spares would be replaced in a year's time. Figure 3. ;_ shows the logis-
tics requirements for low-Eartt_ _'.'h,t with a 90-day resu,_pJ, cir. All time-
dependent items except film and _ap_,' are reduced by on_,-l:, ': rein the 180-day
weigt_ts. Film and tape is resupplied every 90 days re; ' ,. :,.ss of the scheduled
resupply time (Sections 3.5.2 and 4. _.

3.4 FLIGHT PERFORMANCE ANALYSIS

The synchronous orbit selected for the MOT is circular and inclined 28.5 degrees
to the Earth equatorial plane. The radius of this orbit from the center of the Earth
is 22,767 nautical miles and the orbit period is 86,161.25 seconds _about 23
hours and 56 minutes. This orbit period results in the MOT tracing the same
ground track on the Earth's surface every orbital period. The graund track is
a figure eight sDnmetrical about the Earth's equator and is illustrated in Fig-
ure 3.4-1.

The geographic longitude of the MOT in synchronous orbit is nominally 20°W.
This longitude is selected because it:
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STRUCTURE (4,402)

Serv-ce )lodule 1:,_24

Multimission Module

Outer _ylinder b66
Pressurized Section 517

Meteoroid Shielding 150

Adapte r 745

Gimbal Detached

PROPE LLAXT (6,934) (6,262)

.Multimission Module

.ascent and Rendezvous 1,330 1,380

Deorbit 90 90

Propulsion Inet'ts 720 725

MORL Cargo 1,585 1,585

MORI. Caused by MOT 1,668 232
MOT 175 484

Shuttle 0 720

Tanks and Lines 550 230

Gimbal Detached

MORL-MOT Shutt!e- MOT

ATMOSPHERE AND STORAGE (2,370) (2,545)

Oxygen for MORL 1,158 1,158 0

Oxygen for MOT 209 75 216

Nitrogen for MORL 165 165 0

Nitrogen for MOT 153 47 154

3torage Tanks, Lines, and Fittings 685 575 155

DRY C._RGo (2,407) (2,417)

Food, Personal Items, etc. 1,340 1,340 0

MORL Spares 905 905 0

.MOT Spares 36 20 26

Film and Tape 126 0 126

TOTAL 16,113 15,626

Figure 3.3-11: 90-DAY-SUPPLY LOGISTICS-- LOW EARTH ORBIT
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1) 1.oeat_:s the Apo!lo recovery zone over water, just ea_t of Australia; see

Fi,_ure :i.-i-I (per re-entry data from Douglas, R_._terence 9):

2) Is favorable for communication with several existing ground skLtions 100 per-

cent oi the time, e.g., Bermuda, Antigua, Ascension;

3) Results in good tracking coverage by the existing AMR trackinv network dur-

ing ascent operations b) the various vehicles;

4) Is one of the four longitudes at which a synchronous orbit is stationary, albeit

unst:0)ly so, with respect to perturbations due to the Earth's triaxiality (see

Section 3.4.2).

The 28.5-degTee orbit inclination is 5tvorable fer maximizing booster payload for

vehicles launched from Kennedy Space Center. This inclination is also favorable

for observation of our own galaxy,. When the right ascension of the ascending node

of the MOT orbit is 6 hours and 40 minutes, the MOT orbit plane is essentially

normal to the plane of our g'alaxy, thereby miltimizing the zone of the galactic

plane that is "_cculted by Earth. Once every day an opportunity will exist for due-

East launch (maximum payload) into this orbit plane.

The following paragTaphs discuss trajectory profiles employed by the various

vt_hicles to achieve tb_ above MOT synchronous orbit. The s)mchronous orbit is

further discussed from the aspect of orbit-keeping.

3.4.1 Launch and Rendezvous

3.4.1.1 MORL --- The MORL ascent profi?v is shown in Figure 3.4-2 and cc9-

sists of boosting into a 100-nautical-mile parking orbit of 28.5--degree inclin2_tion,

remaining in the parking orbit for 77.5 minutes, and then transferril,,g to the syn-
chronous orbit via a Hohmann transfer. Boost to the parking orbit is achieved

with the first two stages _f the Saturn-V booster via an east ia,Jnch out of Cape
Kem_edy. Boost time is 9 minutes.

The parking orbit is used to reach a position from whici_ the synchronous orbit

can be reached via a Hohmaml transfer. This position is between Hawaii and the

West Coast at 26.4°N latitude and 1240W longitude, see Figure 3.4-1. During the

parking orbit coast time, the vehicle is tracked from the surface, the parking

orbit is determined, the transfer trajectory is computed, the flight systems are

updated, and transfer trajectory instructions are given to the vehicle. The S-!VB

sktgc (_hird stage of Saturn V) is used to inject into the Hohmann transfer orbit.

The nominal _V required is 8080 fps. The injection maneuver takes 4.5 minutes

and 134,000 pounds of propellant. The injection maneuver can be monitored by
Gu_mms, Vandenberg, and/or Houston.

Time in the transfer orbit is 5.25 hours. During this time, the vehicle is tracked

from ga'ound stations of the ETR. Insertion into the synchronous orbit requires a

nominal _V of 4855 fps, which is provided by the S-IVB stage. This maneuver
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FIGtRE 3.4-e: NOMINAL ASCENT PROFILE
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takes 1.75 minutes and 50,000 pounds of propellant. Unless there is some use
for the S-IV stage structure in the synchronous orbit, it is jettisoned and per-
turbed into a (lifferent orbit (to return the S-IVB stage to Earth requires 5000 fps
and to (.,scape tile stage requires 4250 fps).

1) One restart on the S-IVB stage, which is its present design;

2) Minimal _V requirements;

3) Good ground tracking and communication coverage throughou _.ascent;

4) Requires no boostc • modification.

3.4.1.2 MOT and Logistics Vehicle -- The ascent profiles of the MOT and logis-
tics vehicle are essentially the same as the MORL ascent profile described in the
prcvio,¢ section. This similarity is possible because the target MORL is in a
synchronous orbit and because any plane change, introduced with launch window,
L- dv:,_rred until terminal rendezvous. The terminal maneuver then consists of

the plane-change maneuver and any remaining guidance and control errors. Fig-
ure 3.4-3 diagrams this ascent and rendezvous profile.

The terminal rendezvous maneuver is performed with multiple restart engines
aboard the MOT and logistics vehicles at a $V rate of 175 fps per degree of plane
change. Two 1000-pound thrust engines aboard the MOT are sufficient to ensure
the rendezvous operation even if one engine fails. The Douglas maltimission
module desig-n includes a rendezvous propulsion system that uses four 150-pound-
thrus_ el-g-ine._. These engines should be replaced with larger engines _at least
300-pound thrust--because of the greater payload involved (80,000 versus
30,090 pounds).

Figure 3.4-4 shows launch window versus ideal (errorless) terminal maneuver
AV, i.e., the AV required for launch window in excess of that required for error

, corrections. In Section 4.4.3.3, it is shown that a total _V of 426 fps will correct
3 (_ errors and provide a 2-hour (150 fps) launch window.

The weight of the MOT is about one-third of the payload capability of the Saturn V
for a synchronous orbit. As a result, accelerations during the boost of an unbal-
lasted MOT are slightly greater than during boost of the MORL or the logistics
systems. At first- and second-stage burnout, where cutoff accelerations are
about 5.5 and 3 g's, respectively, the changes in acceleration are insignificant
because of the masses involved. At synchronous-orbit insertion, cutoff acclera-
tion of the MOT is 3.25 g's as compared to 2.75 g's for a full payload, which
still leaves the first-stage cutoff acceleration as the determining load factor due
to thrust-to-weight effects. The only other deleterious effect that an increased
cutoff acceleration could have is velocity error introduced through booster cutoff
errors. Even if the cutoff error is as much as :_0.1 second, the additional veloc-

ity error introduced by increasing the cutoff acceleration from 2.75 to 3.25 g's is
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FIGERE 3.4-3: RDMINAL ASCENT & RERDEZVOUS TRAJECTORY PROFILE
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less than 2 fps. Therefore, no problems are anticipated for the light MOT pay-
load and Saturn V combination.

By definition, a satellite in synchronous orbit retraces exactly its greund track
once each sidereal day. Once each sidereal day a launch site at 28.5-degreo
latitude will lie in the plane of a 28.5-degree inclined orbit. The relative posi-
tions of the launch site and the synchronous satellite vary uniquely then with a

period of one sidereal day. When a rendezvous vehicle is launched coplalmr with
the MORL orbit (possible only when the launch site lies in the orbit plane), the
ascent and rendezvous trajectory is identical to the ascent trajectory of the MORL
under errorless operations.

With a launch window it is necessary to launch out of the synchronous-orbit plane.
The rendezvous vehicle is launched into a plane that intercepts the MORL orbit

plane 90-degrees downrange from the launch site so as to minimize the plane
change required for rendezvous. The ascent profile in this plane is similar to
the MORL ascent profile complete with coplanar injection into a circular synchro-
nous orbit. The rendezvous vehicle remains in its own circular synchronous orbit
until it arrives at the intersection (node) of the two synchronous-orbit planes (MORL
and the rendezvous vehicle orbit planes). By properly timing the Hohmann transfer
of the rendezvous vehicle, it arrives at the nofle simultaneously with the MORL.
The plane-change-plus-errors terminal maneuver is then performed to complete
the rendezvous.

The rendezvous vehicle spends about 8 hours in its own synchronous orbit before
rendezvous. During this time, the rendezvous vehicle is tracked and midcourse
corrections are made with the multiple restart engine(s) aboard the rendezvous
vehicle.

The small variation in timing the Hohmann ascent and the small differences in
orbit plane are the only differences in the ascent profiles for the MORL, MOT,
and logistics vehicles. For launch windows of several hours or less, the ren-
dezvous vehicle must spend about 8 hours in its own circular synchronous orbit
for a total time to rendezvous from launch of 14 to 15 hours.

Salient features of this method of rendezvous are:

1) The flight profile of the booster is essentially identical for all of the vehicles
(MORL, MOT, and logistics vehicle);

2) The performance profile required of the booster complements the present
booster definition;

3) The terminal rendezvous maneuver is performed by a propulsion system that
can be selerted specifically for the terminal rendezvous operation;

4) Except for error effects, the relative motion between the two rendezvousing

vel=_cles is cyclic so that, if the terminal maneuver is interrupted or delayed,
an opportunity for terminal maneuver completion occurs every 12 hours;

|
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5) In _Lddition to the propellant required for errors and contingency, the propel-

hint requirements for the terminal maneuver are dependent only on the launch
window reqt' i rein ents ;

6) The closing velocities are low without jeopardizing acquisition.

Alternate candidate ascent and rendezvous trajectories are merely variations in

when the plane--change maneuver is performed. For small plane changes (< 0.5

degree), the plane change can be performed by turning during boost. This pro-

cedure rapidly becomes costly in terms of payload, however, as the plane change
required increases.

A separate plane change in the parking orbitinvolves maneuvering almost four

times as much mass as the proposed procedure and at a AV rate of 435 fps per
degree. Furthermore, such an operation would require two restarts on the S-IVB

which entailspayload penalties,perhaps several thousand pounds, or else a ren-

dezvous AV capabilityaboard the rendezvousing vehicle of about 5000 fps.

A thirdalternateconsists of combining the plane-change maneuver with injection

intosynchronous orbit. This procedure requires about 20 hours waiting in the
parking orbitin order for the MORL to get into favorsble position. Wait time in

parking orbitis undesirable because liquidhydrogen is lostfrom the S-IVB stage

at a rate ofabout 600 pounds per hour. Ifthe ascent can be performed over the

southern Western Hemisphere (trackingand communication considerations),then

the parking-orbitwait could be reduced to about 8 hours. The proposed procedure

minimizes the liquidhydrogen boilofflosses by restrictingthe parking orbitto

only about i.25 hours. Should the synchronous orbitbe located at about 85%V,

then the parking orbitwait time would be near minimum for thisthird alternate;

but thislocationof synchronous orbitwould put the recovery zone over land masses
(western Australia and the PhillipineIslands).

3.4.2 Orbit-Keeping and Smtionkeeping

The AV required for orbit keeping by the MOT and MORL in synchronous orbitis

less than 200 fps per year (pervehicle _,hen detached). The _V required for sta-

tion-keepingby the MOT and MORL is negligiblefrom the aspect of external
disturbances.

A synchronous orbit will change slowly with .time as a result of perturbations due
to:

1) Anomalies in the Earth's gravitational field;

2) Gravity forces of the Sun and Moon;

3) Solar radiation forces.

The rectification of these perturbations by orbital maneuvers is defined as orbit-

keeping. Orbit-keeping of synchronous orbits is performed as necessary to
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maintain the same geographic ground track. Stationkeeping i, the operation con-
corned with ma._nt:,.ining the distance between two satellites within specified limits.
With perfect control _ystems, stationkeeping is necessary o_fly if there is a dif-
ference in tile "above perturbative forces on the two satellites. The following brief
discussion identifies the effects of the above perturbations and their signifi-

• cance in terms of correction _V. " "-

3.4.2.1 Perturbations Due to Earth Gravitational Anamolies --- The Earth's

oblateness and the ellJpticity of the Earth's equator are the major sources of
synchronous-orbit perturbation due to the Earth's gravitational field. The Earth's
oblateness causes the synchronous-orbit plane to rotate westerly about the Earth
polar axis at a constant secular rate so that the ground track of the synchronous
orbit moves steadily westward geographically. This geographic displacement is
readily negated by making the satellite orbit period slightly less than the sidereal
period. Except for sensing and contro, errors, no further orbit adjustment is
required to stabilize the ground track with respect to nodal regression (perturba-
tion clue to oblateness).

The ellipticity of the Earth's equator also causes the ground track of a synchro-
nous orbit to move longitudinally. But in this case, the movement occurs at a
varying rate, either ea.st or west, depending on the longitudinal location of the
satellite. This longitudinal movement is the result of the orbital period changing
rather than the orbit plane rotating. There are four longitudinal locations where
the orbit is stationary, however. Two of the points are stable and two are un-
stable. Th_ stable points correspond roughly to the minor axis of the equatorial
ellipse, and the unstable points are near the major axis.

Analysis of SYNCOM-ii data locates one stable stationary point (minor axis) at
107.3 __2.5_W and an unstable stationary point at 19 ±6°W.

The ground tracks of satellites established in synchronous orbit at longitudes other
than the stable points oscillate longitudinally and symmetrically about the nearest
stable point. Under the most unfavorable longitudinal location (45 degrees from
the stable point), the_V required to rectify this perturbation is less than 7 fps per
year. The correction maneuver consists of a minute _V (depending on the longi-
tude drift tolerance) applied tangentially to alter the orbit period in the opposite
sense of the perturbation. With the MOT orbit located at the unstable stationary
point at 20%/¢, the _V required for orbit-keeping is negligible.

3.4.2.2 Perturbations Due to Su n and Moon Gravity Forces _ The Sun and Moon
resultant gravity force component in the plane of the MORL-MOT synchronous
orbit will perturb the orbit insignificantly, i.e., the ground track will oscillate
long_itudinally only about 0.1 degree. The out-of-plane Sun-Mgon gravity com-
ponent will cause the MORL-MOT orbit plane to regress slowly about an axis
that is nearly normal to the ecliptic plane. This perturbation affects the ground
track initially as a steady change in the inclinat _ n. For an equatorial synchro-
nous orbit, the change in inclination is 0.86 degree per year. For a 28.5-degree

!
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inclined synchrunous orbit oriented normal to the galactic plane, a rate of 1 de-
gree per year is assumed to be representative. Rectification of this perturbation
is merely a plane-change maneuver performed at an equatorial crossing. The
_V required per year is 175 fps.

3.4.2.3 Perturbation Due to Solar Radiation- The effect of solar radiation on

a geocentric orbit is a sinusoidal variation in orbit eccentricity. The period of
this variation is 1 year, and the amplitude is directly proportional to the ratio
A/M, whele A is the area of the satellite facing the Sun and M is the mass of the
satellite (because A will vary somewhat throughout the year, the cycle will not
repeat exactly). The values of A/M for the MOT and MORL are such that solar

perturbations are negligible, however. For example, if the MOT is always
pointed 90 degrees to the Sun line (worst case) the maximum orbit eccentrimty
reached from an initially circular orbit is 0. 0003. The maximum eccentricity
reached by the MORL is about 0. 00015. These variations in eccentricity have a
negligible effect on the orbit ground track.

3.4.2.4 Stationkeeping -- Solar radiation is the only source of orbit perturba-
tion likely to affect the MOT and MORL vehicles sufficiently to require station-
keeping. Using the above variations in orbit eccentricities, the maximum sepa-
zation between these two vehicles is about 3.4 nautical miles due to the annual
variations in eccentricity. To keep the vehicles within 1 nautical mile of each

other would require a AV of 0.25 fps applied no oftener than about 30 days with
the possibility oZ"some intervals between corrections being as much as 180 days.

A AV budget of 200 fps per year per vehicle will cover all orbit-keeping require-
ments in ssnmhronous orbit. Stationkeeping requirements due to external per-
turbations will be negligible for the MOT and MORL vehicles.

3.4.3 Re-entry

The entry trajectory from synchronous orbit is defined by Douglas in Reference
9. The deorbit AV is about 5000 fps, the re-entry angle is -7.5 degrees, and the
time to entry is about 5 hours. Figure 3.4-1 shows the re-entry zone and re-
covery zones lifted directly from Reference 9.

The deorbit I_V is supplied by the service module. The _V capacity of the service
module is also sufficient to deorbit a spent logistics vehicle. On attainment of the

initial deorbit _V (5000 fps) sufficient to ensure entry of the logistics vehicle, the
CSM separates and perturbs into a slightly different orbit to avoid interference.

An additional AV of 200 fps is budgeted for midcourse corrections by the CSM to
ensure achievement of the Apollo entry corridor.

3.4.4 Shuttle From Low Earth Orbit

A st_,dy of the propulsion requirements for resupply of a MOT in synchronous
orbit from a MORL in a low Earth orbit has been conducted. This mode of re-
supply imposes severe propulsion system requirements due to:
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1) Pctentially large plane change requirements (up to 57 degrees);

2) Injection of the supply vehicle into the low-Earth-orbit altitude (_V -= 7800
fps for copianar orbitu) on return from the MOT in synchronous orbit.

This mode of resupply is, therefore, not recommended as these propulsion re-
quirements would cause a larg o. payload penalty.

The AV required to transfer from a 250-nautical-mile circular orbit to a coplanar

synchronous orbit is 12,600 fps. The AV required to return to a coplanar 250-
nautical-mile orbit from the synchronous orbit is also 12,605 fps, but the A-"
required to return to Earth from synchronous orbit is only 5200 fps. This large
difference in AV between returning to low Earth orbit and returning to the Earth's
surface is the AV required to slow the vehicle to orbital velocity following descent

from synchronous-orbit altitude. When returning to Earth, slowdown is achieved
by aerodynamic braking (drag) rather than by propulsion.

Because of the Earth's oblateness, the orbit plane of a 250-nautical-mile orbit
inclined 28.5 degrees to the equator regresses about the Eai'th polar axis at a
rate of 6. 835 degrees p_r day. A synchronous-orbit plane inclined 28.5 de_rees
to the equator also regresses but at a _ate of less than 5 degreos per year. As
a consequence, the low MORL orbit and the synchronous orbit will not be coplanar
most of the time. The a-gle between these planes will cycle from zero to a maxi-
mum of 57 degrees and, en back to zero in 52.67 days. For routine scheduled
resupply operations, this should present no serious problem. But unscheduled
resupply or maintenance would be seriously curtailed sillee the AV required either
to go up to the synchronous orbit or to return to the low Earth orbit varies through-
out this period as shown in Figure 3.4-5, reaching a maximum _V of 16,270 for
one way. For example, if an ascent is made 15 days after the cop!anar opportunity,
the ascent _V is 15,060. If return to the MORL is then m_.de 5 days later, the
_V to return is 15,860 fps.

Logistically, there is no advantage, but considerable disadvantage, to supporting
a MOT in synchronous orbit from a MORL in low Earth orbit. This mode of
operatio,, should be considered only if ther_ is an overwhelming reason for not
putting a MORL into synchronous orbit.

3.5 OPERATIONAL ANALYSIS

The basic telescope configuration for both the synchronous orbit and the low
Earth orbit is generally the same. Therefore, the operational analysis pertain-
ing to the orbital functions necessary to accomplish the rendezvous, docking, de-
ployment, initial telescope setup, checkout, and alignment is identical to those
described in Section 4.3.1 of Reference 1. The launch vehicle and configoaration
for injecting the MOT to synchronous orbit, of course, are different ,_mdare de-
scribed in Section 3.1.2 of this document.
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Maintep.ance remains an important function in the operation of the MOT. For the
synchronous orbit, the same criteria for periodic inspection and maintenance re-
quirements were established as for the low-Earth-orbit case. Although the poten-
tial observation time is greatly increased (resulting in longer telescope operation),
the optical equipment is largely passive with minimum maintenance effect. Sub-
system component operation times are well within the limits of mean time between
failures. Those replacement components, such as reaction-control nozzles, are
covered within the percentage of scheduled and unscheduled maintenance times
allocated for the low-Earth-orbit study.

The operation of the MOT in either soft-gimbal or detachcd mode is much the
same as described in Section 4.3, Reference 1. For the curr,2nt study, the
shuttle travel time between the MORL and MGT was assumed to _e time sequenced

in parallel with the concluding experiment or observation. The tim._, function allo-
cation for the docking and pressurization sequence of either mode is the same.
Therefore, from the MOT nolanal-operation standpoint, there is relatively little
difference between the soft-gimbal and detached modes of operation.

3.5.1 Observational Limitations

One primary objective of this study i_ to determine maximum use of the MOT in
a synchronous orbit. Use of the telescope in terms of available or potential ob-
servation time is a prime basis for this ewduaticn. To establish maximum ob-
servation time, a study o_ the orbital m,.;_-_hanics was conducted to determine what
occurs during a year's operation and _e capabilities for uninterrupted observa-
tion, considering constraints imposed by oceultations by the Sun, Earth, or Moon.
The following discussion identifies the limits of occultation and coverage of the
celestial sphere tc determine fl'.e available observation time per orbit.

The basic assumptions or gr_.md rules used to accomplish this analysis are:

1) The orbit is ._#,chronous with an altitude of i9,330 nautical miles at an in-
cli_._tio:, of 28.5 degrees to the c-nuator.

2) The MOT will not be pointed any closer to the solar vector than 9(, degrees.

3) _"_s_ronomieal observations will be interrupted when the edge of the Earth's
atmosphere or of the Moon comes within the telescope field of view. The
Earth is effectively occ,_lting when the outer edge of the Earth's atmosphere
enters the acceptance cone of the fine guidance sensor. In this particular
problem, it is assumed the fine guidance sensor is offset to the program
star. _Thefield of .view of the fine guidance sensor is then added to the field
of view determined by its offset to determine the MOT field of view,

To permit the Earth (or its atmosphere) to come within the admission cone
of the fine guidance sensor would produce a pointing component away from
the program star toward the Earth- thus ruining scientific observation.
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A similar guidance problem is encountered when. the _maidancc star has rela-
tively bright neighbo,'ing stars. The neighboring stars will bias the guidance
signal by their stray light impinging on the sensor. The dimmer the guid-
ante star, the smaller the admission angle to maintain a high probability of
successful guidance. Spitzer (Reference 61) states that if observations are
to be made on stars fainter than 5th maguitude, or on close double stars, a
smaller guidance admission angle than 30 arc-minutes is required. It
appears conservative then to let the offset guidance sensor have an admission
angle of 30 arc-minutes, or a l-degree field of view.

The offset guidance is assumed to operate over an angular offset of 0.5 de-
gree with respect to the optical axis. This 0.5-degree offset plus the 0.5-
degree guidance admission cone makes up the field angle of t degree or a
total fielu of 2 degrees.

The effective Earth occultation ang!e, thus, includes the angular subtend of the
Earth, plus the atmosphere, plus the MOT field of view.

To avoid the effects of Aurora Polaris and the thermosphere, the height of the
atmosphere is assumed to be 500 nau_cal miles.

3.5.1.1 Occultation by Earth -- Figure 3.5-1 illustrates the effective occulta-
tion angle of the Ear_ as the MOT observes a stellar source. At Position A, the
observation is interrupted until Position B is reached; then observation is con-
tinued.

For computational purposes, let

= angle (degrees) through which the MOT travels during the effective
occultation

e = angle (degTees) subtended by the radius of the Earth plus the thickness
of the atmosphere

_ = the field angle (degrees), which is 1 degree or one-half the field of view

then

= 2(e +/3)

where e may be determined by

sin 0 = RE + tA
AMO T + R E

where"

R E = radius of the Earth = 3442 nautical miles

tA = thickness of the atmosphere = 500 nautical miles

AMOT = altitude of MOT = 19,330 ruautical miles

Using these values,0 = 9°58 _ or = 10 degrees; therefore, ff = 22 degrees.

8O
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The. telescope can then view to within 11 degrees of tl)c center of the Eat'th without

interference. Except for minute, perturbations (luc to the Muon, Sun, an(l the asym-

metry of the l.:arth's gravitational field, the orbit plane of a circular synchronous

ori)it is fixed in solar space. These minute lyerturbations are readily cancelled

with prol)ulsive maneuvers throughout the MOT mission so that the MOT orbit

plane is indeed inertially fixed. This fixed orbit plane then projccts onto the

cclcsti;tl sphere as a fixed g-teat circle.

Any point on th¢: celestial sphere within 11 degrees on either side of the .MOT

orbit plane gre&t circle is subject to occultation or light interference from the

Earth once each MOT orbit period (1436 minutes). The duration of occultation

or light intcrfe::ence varies from zero at these 11-degn'ee limits to almost 88

minutes for an object in the plane of the MOT orbit. This 22-degree spherical

se_oTnent ".n whtch occultation occurs amounts to 19.1 percent of the total area of

the celestial :sphere.

A significant factor when considering occultation by the Earth is the time of launch.

Figure 3.5-2 illustrates the effect of selecting the launch time 12 hours apart.
The MOT in Orbit A is launched in late afternoon where its inclination to the

ecliptic piane is 52 degrees. However, a launch 12 hours earlier (or later)

would produce an orbital Plane B that is 5 degrees off the ecliptic plane. For

planetary observations, Orbit B would not be a choice orbit because of Earth

occ,,.ltation. Orbit A is favored as it would be relatively free of occultation by
the Earth except for periods of the equinoxes. On the other hand, for observa-

tion of objects or stars within our galaxy, positioning of the 28.5-degree-inclined

MOT orbital plane normal to the galactic plane is preferred. This is quite feasi-

ble as the g_alaxy plane is inclined 65 degrees to the equator. This could be

accomplished by choosing a launch time somewhere bet_veen the 12-hour periods

for Orbits A and B. Because of the limited number of planets as compared to the

number of stars in the galaxy, the MOT launch time should be approximately 6
hours _fter the one selected to produce Orbit A.

3.5.1.2 Occultatioh by the Sun --- No direct interference by the Sun is anticipated

if the object is 90 degTees or more from the Earth-Sun line. Then, any stellar

object can be observed continuousiy for approximately 6 months per year without

direct solar interference. _le eccentricity of the EarthVs orbit about the Sun

prevents the observation interval from being exactly one-half year for all objects.

3.5.1.3 Occultation by the Moon -- The part of the celestial sphere that is sub-

ject to occultation by the Moon is concentrated near the great circle of the lunar

orbit plane. It is estimated that an object can be no closer than 1.25 degrees to

the, center of the Moon for satisfactory observation by the MOT. Then, if the

MOT- and Moon-orbit planes are coplanar, any object within 1.25 degrees of the

lulmr-MOT plane is subject to occultation. The period of occultation for an object

within this 2.5-degree zone varies from 0 to 7.7 hours due to the Moon plus 1.5

hours due to the Earth. Figure 3.5-3 illustrates the geometry and phasing that

results in maximum occultation by the Moon when the object being observed is in
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the plane of the MOT and lunar orbits. Occultation of a specific point by the
Earth occurs once each MOT-orbit period. Occultation by the Moon occurs once

and frequently twice in 24 hours about every 27 days. In reality, the lunar-orbit
plane is not fixed in inertial space but rotates about the pole of the ecliptic plane
to complete one rotation in 18.6 years. Then the MOT- and lunar-orbit planes
are copmnar only momentaiiiy.

Figure 3.5-4 illustrates the effect on occultation cf the MOT-orbit plane being
inclined to the lunar-orbit plane. It can be visualized that points further and
further from the lunar-orbit plane are occulted as the inclination between these

orbit planes increases. The locus of occulted points is not a solid segment of
the celestial sphere as when the orbits are coplanar, but is a prolate cycloid as

shown in Figure 3.5-5. A loop of this trace is completed each sidereal day.
When the Moon is in the vicinity of the line of nodes of the MOT- and lunar-orbit
planes, the loops are narrow. The loops are fullest when the Meon is 90 degrees
from a node. The time required to girdle the celestial sphere is one sidereal
lunar month so that 27.4 loops girdle the celestial sphere. The significance of
this itlustration is that during one _idereal month most of the celestial sphere
is free of occultation, even in thc_ vicinity of the lu_mr-orbit plane. The rotation
of the lunar--orbit plane and the synodic period of the MOT and Moon system pre-
clude fr.._x---_uentrepetition of an occultation trace.

With the MOT in a 28.5-degree inclined orbit plane, the maximum angle that can
exist between the lunar-orbit plane and the MOT-orbit plane is 57.1 degrees. At
this limit, points within 6 to 7 degrees on either" side of the lunar-orbit plane may
be occulted by the Moon, and the maximum occultation interval is 5.5 hours.

The net result is that occultation by the Moon of a specific point may amount to
as much as 5 to 8 hours but, in the genera] case, recurrence Js ._nfrequent.

3.5.1.4 Available Observation Time q From a synchronous orbit, 80 percent
of the celestial sphere can be observed continuously for 6 months of the year free
of occultation or interference by the Earth or Sun. The remainder of the celestial
sphere (that which is within 11 degrees on each side of the MOT-orbit plane) can
be obser_Jd for 22.4 hours out of every 23.9 hours for 6 months of the year.
Occultation by the Moon can be as long as 5 to 8 hours but in the general case
occurs inirequently. With proper target selection, the telescope can be pointed
so as to be unaffected by occultation by the Moon or Earth during any one orbit.
This situation result_ in the capability for continuous observation for 24 hours
(1436 minutes) per orbit. Therefore, for this study, 24 hours per orbit are
assumed available for stellar, galactic, and intergalactic observations and 22.4
hours per orbit for planetary observations.

3.5.2 Functional and Timeline Analysis

Based on the available or potentiat observation time from synchronous orbit, a
timeline evaluation similar to that accomplished for the low Earth orbit was con-

ducted. A 1-year astronomical pro,T:am was planned (Figure 3.5-6) to evaluate
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a typical order for conducting experiments, m_ntenance, changing of the second-
ary mirror, trips between MORL and MOT, _-a crew-rotation or logistics cycles.
The time allocated to each experiment is rcpresen_.,tive oi a typical program and

associated supporting requirements, but f,exible to accommodate varying obscrv:,-
tion priorities.

Early in the study, the effects of radiation on the sensitive photographic film were
examined and determined to have a significant impact on the program. The radia-
tion environment in synchronous orbit, as discussed in Section 4.3, is a limiting

_l,n_ is stored in the MORLfactor on both the storage and usage of the filn_. The _"
biowell to take advantage of increased shieidingo Additional shielding arodnd
the film storage container is also required. The shielding requirements are
based on a 60-day storage time selected as a limit because approximat_qy 53
percent of the time i_ allocated to expe-iments that use photographic film. If
the film is used immediately following each resupply, the maximum time of ex-
posure to radiation in the space environment is approximately 60 days Jn each
90--day pe,'iod. Therefore, the 1-year program schedules photographic observa-
tions after each resupply of film (by either a crew-rotation launch or a 'ogistics
launch, _ne of which occurs approximately every 90 days). It is assumed that
the film will be deve'oped immediately after being exposed. This immediate
processing is desirable to eliminate the film's sensitivity to radiation with re-
sultant loss in image quality.

Magnetic tape used for spectrometry and photoelectric scanning is not affected
by radiation, 3o time in orbit is not restrictive. Therefore, observations using
recording tapes are scheduled towards the end of each 90-day period.

Additionally, the program is arranged to allow conducting all f/15 observations
before changing the secondary mirrors for f/30 o0sezvations. The frequency of
trips required between the MORL and MOT, crew-rotation sequence, and the con-
sideration for maintenanc,: are shown in Figure 3.._-6. The same allocatio_m for
times to accomplish the various tasks were used as for the low-Earth-orbit study
in Section 4.0 of Reference 1.

Large-scale photography of planets was omitted from the prior study, but it "s
an important consideration in the astronomica', program and can result ir_ a sig-
nificant requirement on the photographic expendables. Of the 18 percent of the
time allocated to large-scale photography, 3 percent has been assigned for plane--
tary observations. For astrometric photography of stellar targets, 2- x 2-inch
film formats are considered;but, for planetary observations where time-D use
photography may be desired, a cine camera of the 70-millimeter roll type would
be added.

Exposure times for planetary observations are relatively short, generally from
1 to 5 seconds. Thus, it is possible to obtain an enormous quantity of photographs
within the time allocated for planetary observations. For this study, planetary
observations will be conducted intermittently during the two periods scheduled for
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large-scale photoi_raphy in the typical p, ogram. For example, approximately

200 exposures l)Cr day would be made of the. plaaet Mars at appro_matcly 16

exposures every 2 hours. If each exposure ta_:us 5 seconds, then the time ex-

pended is only :. 3 mim:.tes _.very 2 hours or 16 minutes per day. The next most

important planet from the standpoint of obtaining photographic data may well be

Jupiter. It is anticipated that approximately 20 intermittent exposures of Jupiter

wouhl bc t_kcn per day. For Saturn, the exposure time is estimated to be 15

seconds Ior approximately five photographs per day. Other planets could require

, an average of 10 seconds of exposure time, five times a day.

Because, continuous observation of the planets will not be conducted, frequent re-

orientation and stabilization of the MOT to o.:her planets or stellar targets be--

come necessary. The MOT maneuver rate is 4 degrees per minute with an

a_'.hti'Jaal 1 :_inute r_.iuired to complete target acquisition. Therefore, frequent

rcalig-ament of the telescope will consume more time than actual observation time.

For this study, the tlme required to reorient and s_bilize the MOT for large-

scale photography of the planets is included in the 3-percent allocation for this
scier, tific observation.

• The sumn.ary chart, Figure 3.5-7, indicates the available observation time and

number of possible targets for each experiment after deducting the time required
for trips and maintenance.
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I 4.0 OPERATIONAL AND DESIGN COMPARISONS

4.1 TtlERMAL DISTORTION CONTROL

I 4.1.1 Thermal Balance Analysis

Temperature variations in the supporting structure and in the optical elements

I of the tclescope can readily introduce unacceptable distortions in the optical sys-tcm. A thermal analysis was therefore conducted to determine temperature dis-
tributions on the MOT structure and optics• The telescope is assumed launched

I at sun_mer solstice into a circular synchronous orbit at an inclination of 28.7
degrees so that the Sun vector is incidental to the MOT plane at 5.2 degrees•
Variations in thermal environment result from occultation of the telescope by

I the EaCh and from solar-reflected radiation and Earth-emitted radiation enter-
ing the optics • Comparisons with temperatures and temperature distributions
for Icw-Earth-orbit (250-nautical-mile) operation (reported in Reference 1) are

I presented in the following texts

The telescope configuration used in the thermal analysis is shown in Figure 4.1-1

I and is identical to that. used for the low-altitude thermal studes of Reference 1
This configuration is representative of the final telescope configuration, even
though not identical to it. The calculated temperatures and temperature distri-

I bution either The mathematical thermalrepresent configuraticn. models used

in the low-Earth-orbit study were modified to incorporate the thermal environ-
ment experienced at synchrouous-orbit altitude°

1
The telcscope shell and ba_k of the primary mirror were assumed to be insulated
with a 1--inch laver of multilayer vacuum insulation having a nominal conductivity

I x primary mirror is supported from the telescope
of 7. 0 10-5 Btu/hr-ft-°R. The

structure with low-conduction fiberglass supports. Further assumptior,s are:

| 1) Material properties asstmmd for the thermal analyses are given in Figure
! 4.1-2;

2) Cabin temperature was assumed to be 530°R;

3) Telescope attitudes and orbit definition are shown in Figure 4.1-3;

i 4) Thc solarconstantwas assumed tobe 443 Btu/hr-ft2;
4 , 5) Outer surface coating p,_cpcrties were _solar = 0.2 and ¢IR = 0.9 (white

paint) ;

I 6) Interior surface coating properties were pdifft_e = 0.1 and ¢IR = 0.9 (flat
black paint) ;

I 7) Assumed Earth temperatures were taken from TIROS data;
t

8) The primaz3r mirror is a waffle structure (same construction of the earlier

I analysis).
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Telescope orbit and orientation were selected to obtain maximum variation in its
thermal environment at synchronous-orbit altitude. The inclination of the orbit at
28.7 degrees ai]ows the telescope to be occulted by the Earth, creating variations
in the thermal enviromnent. The orientation of the telescope parallel to the solar
vector allows Earth-reflected solar radiation and Earth-emitted inf_'ared radia-

tion to enter the optics, creating additional variations in the environment. The
orientation of the telescope perpendicular to the solar vector eliminates Earth
effects; the only variation in thermat environment occurs during occultation.

4.1.1.1 AnalysisTechnique --The thermal balance to the telescope is a func-
tion of the incident solar radiation, Earth-emitted infrared radiation, Earth-
reflected solar radiation, radiation from the telescope structure to space, inter-
nal radiation within the telescope structure, an? heat conducted through the tele-
scope structure.

Heating of the telescope due to incident solar, Earth-reflected, and Earth-emitted
radiation as functions of orbital position is calculated using the planetary environ-
ment computer program. __o aid in controlling the thermal environment of the
telescope mirrors, direct solar radiation is not allowed to fall on the inner sur-
faces of the telescope tube. Temperature variations in the telescope structure
and in the primary and secondary mirrors are calculated by the Boeing engineer-
ing thermal analyzer (BETA) program. Internal reflections resulting from the
presence of mirror surfaces and the blocking effect of the secondary mirror struc-
ture are considered. The variation in thermal conductivity with temperature of
all materials is considered as well as the variation with temperature of the speci-
fic heat of beryllium.

The mathematical thermal model of the manned orbital telescope is complex be-
cause of the stringent tolerances to which the primary mirror temperature dis-
tribution must be restricted to eliminate distortion. A fine nodal mesh was con-

sidered necessary to accurately simulate incident radiation from the Earth and
Sun, as well as radiation between nodal areas of the telescope structure with other
structure and space. Figures 4.1-4 and 4.1-5 show the nodal network and struc-
tural thermal conduction paths employed in the analysis. The network is identical
to the one used in the low-Earth-orbit analysis of Reference 1.

4.1.1.2 Temperature Distributions- Various temperature histories were
studied for the two orbit cases.

Transient Temperatures After La.nch_ The transient-temperature histories of
the mirrors and telescope structure after an initial launch temperature ef 530°R
are shown in Figure 4.1-6. The outer wall temperatures (not shown) reach equi-
librium very quickly because the outer wall has a small thermal capacitance and
is well insulated from the internal structure. The inner wall temperatures stabi-
lize in approximately 45 hours due to their low thermal capacitance and the effec-

tiveness of the thermal insulation. The primary and secondary mirrors require
a much longer time to reach equilibrium temperature due to the insulation of the
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FIGURE h.i-6 TRANS_ TEMPERATURES AFFER
LAUNCH - TELESCOPE AXIS
PARAI/X_ TO SOLAR VECTOR

102

1966017557-120



D2-84042-2

optics from the rest of the t_!escope structure. Even at synchronous-orbit alti-
tude, the equilibrium temperature of the primary mirror is dependent on the tele-
scope attitude and varys from 335°R in the parallel position to 340°R in the per-
pendicular position. The equilibrium temperature of the secondary mirror is
approximately 35°R colder than the primary, mirror since it is more isolated from
the cabin, the prima_, source of heat to the telescope optics.

For the low-Earth-orbit case, the maximum primary-mirror temperahire vari-
_ion occurs about 15 hours a.qer launch, with the following temperature differ-

ences between adjacent nodes: circumferential, 0.07c_; radial, 0.03_R; axial,
0.13_R. The corresponding maximum temperature variations for the synchronous-
orbit case occurs about 20 hours after launch. They are: circumferential, 0.11°R;

radial, 0.03°R; and axial, 0.17°R.

Outer Tube Temperatures -- The outer tube temperatures when the telescope axis
is perpendic,,lar to the solar vector are shown in Figure 4.1-7. The upper curve
represents a 120-degree segment of the outer tube, which is always oriented to-
wards the Sun. The "dip" in the curve is due to the telescope being occulted by
the Earth for a period of 1.14 hours. For this orientation, no axial thermal

gradients are present. For the low-Earth-orbit case, the m.xximum and mini-
mum temperatures for this segment of the outer tube wall are 502°R and 416_R,
respectively.

For the synchronous-orbit case, the corresponding temperatures are 502°R on4
358_.

The two lower curves of Figure 4.--7 are the segments of the outer wall that
alternately see deep space and Earth. For iow Earth orbit, the maximum and
minimum temperatures are 436°R and 300_R, respectively. For the synchronous-
orbit case, the corresponding temperatures are 186_R and 134°R.

Figure 4. i-8 shows the outer tube temperatures when the telescope axis is parallel
to the solar vector. For the low Earth orbit, the maximum and minimum tem-
peratures are 424°R and 300°R, respectively. For the synchronous-orb, it case,
when all outer wall segments alternately see deep sp_cc and Earth, the corres-
ponding temper,_tures are 174_R and ll0°R, respectively.

Except for the segments of the outer tube on which direct solar energy falls +_he
outer tube is considerably colder in the synch, -. r,ou._-orbit case. This is te be
expected since the thermal energy from Earth is substantially reduced at syn-

chronous-orbit altitude and, subsequently, a lower "sink teu_peratur_)" _s experi-
enced by the telescope.

Immr Tube Temperatures --The quasi-steady-state inner tube temperatures for
the twn telescope attitudes of Figure 4.1-3 are shown in Figure 4. !-9 fnr the
synchronous-orbit csse. The axial temperatures of the inner tube range from
266_fl at the o[_en end of the telescope to 333°R at the end near *he primary mirror.
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For the low l_al'th orbit, the axial temperatures of the inner tube depend more
on the ,telescope attitude. When parallel to the solar vector, the inner tube tem-
pe,'atures range from approximately 405°R at the open end of the telescope to
4;;0:i{ at the end near the primary mirror. When perpendicular to the sohtr vec-
tor, the inner tube temperatures range from approximately 370°R at the open
end of the telescope to 40'_°R at the end near the primary mirror.

Dependence of the inner tube temperatures on telescope attitude is caused by the
difference in thermal environment at each telescope position. When parallel to
the solar vector, Earth effects are felt by the i_Lside of the telescope. When per-
pendicular, the Earth has a minimum effect. Regardless of at.titude, the Earth
effects are significantly reduced and a nearly isothermal environment is estab-
lished when the telescope is at synchronous-orbit altitude.

Synchronous- and low-Earth-orbit inner tube temperatures for the nodes nearest
the primary mirror are shown in Figure 4.1-10. in the low Earth orbit, the
dependence of the inner tube temperatures on telescope attitude can be seen. Dif-
ferences in the circumferential temperatures occur. In _he synchronous orbit,
the inner tube temperatures are practically independent of the telescope attitude
and the circtm_ferential temperatures do not vary. In addition, the inner tube
temperatttres are approximately 100°R colder in the synchronous-orbit case be-
cause of the reduced effects of Earth-emitted and reflected radiation in synchro-
nous orbit.

Mirror Temperatures, Quasi-Steady State _ The quasi-steady-state primary and
secondary mirror temperatures when the telescope axis is perpendicular to the
solar vector (i. e., the telescope views only space) are shown in Figure 4.1-11.
The primary mirror circumferential temperature differences between adjacent
nocles in both synchronous- and low-Earth-orbit cases are 0.001°R or less due
to the nearly isothermal mirror environment when pe_Tendicular to the solar
vector.

Temperature differe. "ees between adjacent nodes in the secondary mirror are
considerably larger due *o the lower thermal conductivity of fused silica glass.
However, larger temperature differences are tolerable with fusqd silica glass
because of a lower coefficient of expansion.

Quasi-steady-state p.imary and secondary mirror temperatv-es when the te!c-
scope axis is parallel to the solar vector are shown in Figure 4.1-12. Circum-
ferential temperature differences between adjacent nodes in the primary mirror
are 0.003°R or less for the synchronous-orbit case. In th. low Earth orbit, the
corresponding temperature differences were 0.008°R. Temperature variations
in the s_chronous-orbit case are less since the primary causes of these vari-
ations, Earth effects, are less.

Figure 4.1-13 is a comparison of the maximum and minimum quasi-steady-state
mirror temperatures for the synchronous-orbit case and the low Earth orbit with
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the telescope axis perpendicular to the solar vector. The primary mirror equi-
librium temperature is 3400R for the synchronous-orbit case, 67°R colder than
the low-Earth-orbit equilibrium temperature.

The secondary mirror equilibrium temperature is 304°R for the synchronous-
orbit case, 86°R cohler than the low Earth--orbit case. The circumferential
temperature differences are greatly reduced from those of the low Earth orbit.

Figure 4.1-14 is a comparison of the maximum and minimum quasi-steady-state
mirror temperatures for both the synchronous- and the low-Earth-orbit cases
with the telescope axis parallel to _he solar vector. The primary mirror equi-
libri:_.m temperature is 335°R for the synchronous-orbit case, 102°R colder than
the low-Earth-orbit equilibritu_ temperature.

The secondary mirror equilibrium temperature is 304°R for the synchronoas-
orbit case, 102°R colder than the low earth orbit. The circumferential tempera-
ture differences are considerably reduced since the cyclic variations m the ther-
mal environment due to Earth effects are greatly reduced at synchronous
orbit, resulting in the mirror being more uniformly heated than in the low Earth
orbit.

Cyclic variations in the thermal environment of the telescope have two sources:
(1) occultation by the Earth and (2) solar-reflected m-.d Earth-emitted radiation
entering the optics. At synchronous-orbit altitude, maximum occultation takes
approximately 5 percent of the 24-hour' orbit period. At low-Earth-orbit altitude,
occultation takes about 38 percent of the 1. 445-hour orbit period. At synchronous-
orbit altitude, the radiation erom Earth enters the optics of the telescope for ap-
proximately 3 percent of the 24-hour orbit period; at low Earth orbit, radiation
from Ear_;h enters the telescope for approximately 38 percent of the 1. 445-hour
orbit period. Therefore, for the low-Earth-orbit case, the the1_nal environment
of the telescope is changing over approximv-ely 76 percent (_ 1.1 hours) of the
1. 445-hour orbit period. At synchronous-orbit altitude, the thermal environment
of the telescope is changing over approximately 8 percent (_ 1.92 hours) of the
24-hour orbit period. In addiLion, the radiation view factors between the telescope
optics and Earth are reduced at synchronous-.orbit altitude. For these reasons,
the cyclic variations in tbe thermal environment of the telescope have a minimal
effect on the telescope at synchronous-orbi! altitude.

Mirror Temperstures, .attitude Change _ Mirror temperature variations that
occur during transient operation are shown in Figures 4.1-15 and 4.1-16. To
determine the transient temperature gradients, the telescope structure and mirrors
arc first permitted to reach equilibrium temperature with the telescope axis paral-
lel to the solar vector so that the primary mirror views space and, occasionally,
Earth. From Figure 4.1-12, the equilibrium primary and secondary mirror tem-
peratures for the synchronous orbit are 335°R and 302°R, respectively. The tele-
scop_ attitude is then rotated 90 degrees so that the telescope axis is perp _..dicular
to solar vector and the telescope continuously views space, The new mirror
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equilibrium temperatures for this position of the telescope are 340"R and 304"R,
from Fig_re 4.1-13.

Figure 4.1-15 shows circumferential temperature variations. The greatest cir-
cumferential variation on the primary mirror for the synchronous-orbit case is
0.002*R. For the low-Earth-orbit case, the circumferential variation is 0.015°R.

Figure 4.1-16 shows radial temperature variations. The largest radial variation
en the primary mirror for the synchronous-orbit case is 0.001°R. For the low-
Earth-orbit case, the radial variation is 0.011°R. Maximum temperature vari-
ations occur approximately 20 hours after reorientation of the temseope.

Instead of increasing in temperature as might be expected, the primary mirror
initially cools. This initial cooiing is reasonable, though, since the equilibrium:
temperatures of the inner tube are dependent on a small amount of Earth radi-

ation entering the telescope. By removing the Earth radiation that occurs at the
noon position in orbit, Figure 4:1-9, the inner tube wall temperatures decrease
and, since the primary mirror is coup 1-d by conductors to the inner tube, its
temperature likewise decreases. Th. _perature of the primary mirror con-
tinues to decrease until the effect ol ih_ solar linking of the outer tube is felt by
the inner tube. Then the primary mirror temperature will start to approach
340_R, its equilibrium temperature when perpendicular to the solar vector.

4.1.1.3 Conclusions --Thermal control of the primary and secondary optical
geometry by passive means appears .o be feasiblo for operation at the telescope
attitudes studied. Temperature differences experienced by thc optics in the low-
Earth-orbit case are considerably reduced by the nearly isothermal environment
found at synchronous-orbit altitude. The temperature variations presented in
this analysis are clearly dependent on the ability to manufacture a telescope
structure having the previously defined insulation and support thermal conduct-
ance properties. The effective thermal insulation of the primary mirror from
the floor bemn and use of low conductive attachments to the inner telescope tube
structure are of prime importance for preventing the occurrence of excessive
temperature variations in the mirrors.

The Earth shade and doors that were recommended for the low-Ea=_h-orbit oper-
ation to reduce the Earth heating effects were not included in this analysis. The
results show that the temperature variations are less without the doors and Earth
sade, than at low-Earth-orbit altitude with the doors and shade.

The recommended surface coatings of the low-Earth-orbit analysis were used for
this analysis and appear to be quite satisfactory for the telescope attitudes studied.

4.1.2 Thermal D_stortions

4.1.2.1 Prima2_" Mirror _ Thermal distortions of the primary mirror were com-
puted with the aid of a digital program for performing structural analyses. The
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st, uctural idealization used for this analysis, along with identification of nodes
aud structural elements, _re sho',_ in Figures 4.1-17 and 4.1-!8. The st_Jc-
tural elements are quadrilateral plate_ joined 8t the nodes.

Temperatures are given in Figures 4.1-19, 4.1-20, and 4.1-2.1, and interpolated
to provide a temperature input for each node. The cases analyzed include: (1)
perpendicular to solar vector, {2) parallel to solar vector at dawn, and (3) parallel
to solar vector at noon. It was assumed in the analysis that the mirror had been

figured to f/4 at -54.9°F.

Distortions of the mirror reflecting surface ._re shown in Figures 4.1-22, 4. i-23,
and 4.1-24. A least-square paraboloid w,s fitted to the data and an RMS error
computed. This paraboloid is described by the equation:

Z =a r2 +bx+c

where a, b, and c are the coefficients to be determined by the method of least
squares.

?

The RMS deviations are:

= Telescope Orientation RMS Deviations

Perpendicular to solar vector 0.592 _0 -7)

Parallel to solar vector--- dawn O.871 (10-7)

Parallel to solar vector -- noon 0.52 9 (10-7)

or approximately ),/330, k/225, and ),/375, respectively.

Overall thermal deformation of the mirror in synchronous orbit is larger than
for the low-Earth-orbit case of Reference 1 because of the dfffere.-.ce of approxi-
mately 125 degree: b_*_ween the mirror fabrication temperature and the low oper-
ating temperature in synchronous orbit. This change in bulk temperature has a
small effect on mirror capability, as shown by the RMS deviation values above,
but results in a decrease in the mirror focal length. The change in focal length
caused by a bulk change in temperature for a mirror computed at 70°F is shown
in Figure 4. ].--25. The method suggested by Dr. Bolser to circumvent this large
change in focal length is to check the mirror fiplre on the ground at the antici-
pated operating temperature and attain correct fig_re at this condition. This
technique would virtually eliminate any large change in the back focus location. \

4.1.2.2 -- Secondary Mirror-Suppo1_ Tube -- An examination of the temperatures
in the support tube will show that the secondary mirrors can be held within toler-
ances by the baseline corffiguration.

4.1.2.3 Conclusions -- It can be concluded that the thermal distortion of the

miz rot optics can be kept within acceptable tolerances on all counts.
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FIGURE _.1-19 MIRROR TgMF_RATt]_ DISTRIBLTION SYl_]_01_ ORBIT -
TELESCOPE AXIS I_t_RDICUL_ TO SOLAR VEGTCR
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4.2 ATTITUDE CONTROL

4.2.1 Summary and Technical Approach

The attitude-control study was omentzd towards satisfying two major objectives:

(1) analyze the feasibility of providing adequate attitude control for the synchro-
nous orbit MOT and (2) compare svnachronous and low-Earth-orbit operation and
the detached- and soft-gimbal-mode configuratiorm. Differences in attitude-
control requirements between low-Earth-orbit and synchronous-orbit, operations
x,ere found to be minimal. The study was then concentrated on the following two
tasks:

• Synchronous-Orbit Disturbauce Analysis

• Soft-Gimbal-Mode Analysis

Predominant disturbances in synchronous orbit are due to graxdty gr_.xlient and
solar pressure. These two souIces require a telescope momentum-storage
requirement of 180 ft-lb-sec for one orbit, which ensures that desaturation will
not be required during an observation. The corresponding momentum-storage
requirement for the low Earth orbit is 355 ft-lb-sec; thus, the two systems are
of comparable size.

Simulation of the MOT-MORL combination in the soft-gimbal mode showed that:

1) The MOT and MORL ACS's remain stable;

2) The MORL control system provides damping for one of the linear degrees of
freedom between the MOT and MORL;

3) The MORL crew disturbances are attenuated by a factor of 30,000; howcver,
even this level of disturbance can induce excessive MOT pointing erre.rs by
interaction with the gimbal friction within the control moment gyros (CMG's);

4) The use of a high-frequency MOT ACS with high-frequency CMG's makes the
errors quite small.

From an attitude-control viewpoint, there is little difference between operation
at low-Earth- or synchronous-orbit altitudes. A slight advantage is accrued in
the synchronous orbit due to lower disturbances (lower momentum CMG's), less
background light to affect the optical senst, rs (possibly less sensor noise), and
shorter times per obselwation (relaxed long-term drift requirements). The de-
tached mode remains the more advantageous flx)m the standpoint of ability to
maintain the required 4-0.01-arc-second pointing stability; however, this accuracy
can also be attained with the soft-gimbal configuration.

4.2.2 System Description

4.2.2.1 Requirements _ The MOT ACS must provide stabilization during the
final phase of rendezvous, docking, and stationkeeping with the MORL, as well
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as subsequently providing adequate control accuracy to satisfy the scientific
cxpe ri ments.

The Saturn IV-B provides attitude controi up to and including injection into syn-
chronous orbit. The MOT attitude-coritrol computer is then activated to command
midcourse corrections and the plane-change maneuvers. The MOT ACS is used
to complete the rendezvous with the MORL. Latter phases of this rendezvous and
the docking are accomplished by the MORL crew commanding MOT motions. This
control authority assigned to the MOT is based on results of a Boeing-conducted
docking simulation that inch:ded the crew in the maneuvering vehicle. However,
since the low control authorities found acceptable result in low physiological feed-
backs to tile crew, it is anticipated that the docking task can be performed equally
proficiently by the MORL crew

The most critical control requirement is to provide adequate pointing of the tele-
zcope's optical line of sight to meet the experiment requirements. This pointing
requirement is identical for both the low-Earth- and synchronous-orbit altitudes,
but the total elapsed time to accomplish an observation is different. In the low-
Earth-orbit case, some of the longer experiments require multiule-orbit expo-
sures and, consequently, target reacquisition. In the synchronous-orbit altitude,
the observation times anticipated are all less than the orbit period; thus, reacqui-
sition requirements are rcmoved and the total time required to perform a given
experiment is reduced. Figure 4.2-1 summarizes the accuracy and stability re-
quirements per Reference 1. The highest poL-lting stability required is *0.01 arc-
second (2 _) during the photographic experiments, while the highest pointing ac-
curacy required is ±0.01 arc-second during high-dispersion spectroscopy experi-
mcnts. Here pointing accuracy is defined as the deviation between the desired
pointing and the long-term average of the pointing actually achieved. The pointing
stabliitS, is defined as tl'.e amplitude of the pointing excursions around the long-
term average position.

4.2.2.2 Selected Configuration--To keep the system as simple as possible,
only single-level vehicle torquers were considered. Techniques such as servoed
optics or other dual-level torquing systems may well prove advantageous; however,
results with the present system continue to look very encouraging. The selected
torquer is a control moment gyro (CMG) ; its selection being due primarily to its
extremely high linearity and response, and secondarily to the size, weight, and
power advantages it offers. Like any momentum storage device, the CMG is
limited in the amount of angular momentum that it can store and, thus, reaction
control jets (RCJ's) must be provided to desat,_rate or remove the stored angular
momentum from the CMG. Prewous studies have shown that CMG's cannot be

desaturated by the RCJ's without inducing appreciable system errors, thus, the
CMG's must have sufficient momentum-storage capability to overcome external
disturbances for the longest continuous viewing period required. An analysis of
the disturbance environment for the synchronous-orbit MOT indicates Y- and Z-

axis momentum-storage requirements ot 48 and 180 ft-lbf-sec, respectively, for
a 24-hour period. Thiq requirement is essentially applicable to either the detached
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INITIAL RENDE Z VOUS

Pitch, Roll, Yaw +0.5 degree

SUN ACQUISITION

Pitch and Yaw +0.25 degree
Pitch, Yaw, and Roll Rate ±0.09 degree/sec
Acquisition Time 6 minutes

ORBIT AND ST ATIONKEE PING

Pitch, Roll, Yaw +0.5 degree

DOCKING--MOT TO MORL

Pitch, Roll: Yaw Manual control
Control Authority 0.1 ft/sec 2- 1.0 deg/sec 2
Maximum Fre'iuency 14 per year

STAR ACQUISITION

Coarse Pointing-- Pitch, Yaw, Roll +3 arc minutes
Initial Star Acquisition Time 15 minutes
Reorientation in Coarse Mode 5 degrees in 2 minutes,

90 degrees in 30 minutes
Intermediate Pointing +2 arc seconds

FINE POINTING

ON AXIS-- MOT optical axis coincident with fine error sensor null axis

Pitch ±0.03 arc second
Yaw ±0.15 arc second
Roll ±3 arc minutes

Star Magnitude 10th magnitude or brighter

Maximum duration 24 hours pointing

OFF AXIS- MOT optical axis has angular offset from fine pointing sensor
null axis

Absolute Pointing
Pitch, Yaw ±0.2 arc second
Roll ±30 are seconds

Stability and Repeatability
"Pitch, Yaw ±0.01 arc second

Roll ±0.2 arc second

Star Magnitude +11 to +13
Maximum Duration 24 hours

Figure 4.2-1: ATTITUDE-CONTROL REQUIREMENTS
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or sot t-gimbal mode. The CMG's for both the Y and Z axes are sized at 200

tt-lbf-sec, thus permitting maneuver rates of up to 4 degrees per minute. (By
way of comparison, the Y and Z axes required 600 l_-lbi-sec CMG's in the low
Earth orbit for control over a 40-minute interval.) Because of lower disturbances

and inertias about the X axis, a 60-ft-]bf-sec storage capability is adequate.

The synchronous-orbit altitude CMG configuration is the same as that for the low

Earth orbit and consists of three twin-rotor, one-degree-of-freedom CMG's, as
shown in Figure 4.2-2. This CMG configuration has the advantage of possessing
minimum interaxis cross coupling.

To cover the total range of angular measurements required (130 million to one)
requires several sensors. Figure 4.2-3 shows how these sensors are used in

the attitude-control system. DuriDg orbit-plane-change, rendezvous, and docking
maneuvers, the g-yro reference is used to command the CMG's, which in turn
torque the telescope. During this operation, the CMG's require frequent desatur-
ation by the RCJ's.

Attitude control for scientific experiments is initiated by first acquiring the Sun
with tne Sun sensors and then perfol"ming a slow roll around the Sun LOS to per-
mit the coarse-u.;de star trackers to determine the celestial orientation of the

telescope. Control is then switched to these star trackers, which in conjux_ction
with the digital computer continually maintain a knowledge of the MOT's orienta--
tion. The coarse star trackers command the CMG's through the digital computer.
The other guidance loops operate in a completely analog fashion to avert loss in
_-esolution due to q uantization. Once a desired targets has been selected by the
MORL crew, the coarse star tl'ackers provide command signals to maneuver the
telescope to the selected orientation. An intermediate sensor then acquires a
guide star (which may or may not be the target star), and control is transferred to
this sensor to stabilize the telescope at a point that lies within the range of the fine
pointing sensors. There are two fine pointing sensors: an on-axis sensor for

high-dispersion stellar spectrometry and an off-axis sensor for all other experi-
meuts. With this configuration, the ACS size, weight, power, and resupply re-

quirements are as shown in Figure 4.2-4. The total system weight is 1130 lbf,
of which some 60 percent must be replaced every year. Although these calcula-

tions are made using existing reliability data (and as such are pessimistic), they
do emphasize the strong requirement for manned operation of the telescope.

4.2.2. q CMG Characterisqcs --The CMG's rotate through complementary
angles as showu in Figure 4.2-2 to transfer momentum into the vehicle. One

way of constraining the equal and opposite gimbal angles is by the use of gear
coupling. Reference 1, however, has shown that one important limitation on
system performmme is due to friction of the CMG gimbals. Because both the
friction mid backlash of gearing are objectionable, an alternate constraint

mechanism studied at Boeing involves the use of "power tape wheels. " Construc-
tion and tests of such CMG's have shown that they are ideaity suiied for high-
precision attitude control. One such CMG is shown in Figure 4.2-5. The
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• 4ire bands are the tape wheels. The rotors are inside the gimbaleJ black
housings. The tape wheels solve the synchronization problem and pe:'mit use

f a single-gimbal serve. This serve is termed by feeding the gimbal rate , as
measured by a brushless direct-current tachometer through amplifiers to a
brushless direct-current torque motor. By using an active-gimbal nerve, high-
response CMG's c_n be used; these help reduce effects of gimbal friction. The
gimbal-torque-motor torque capacity is selected to provide torque sufficient
for vehicle maneuvering with the CMG. T" gimbal inertias are estimated at
H/2000 per Reference 1. The estimated gtmbal frictions are based on the same
Barden A540T3 bail bearings used in Reference 30 (!-5/16-inch outside diameter,
450 lbf max load). The CMG specifications are rshown in Figure 4.2-6.

FIGURE 4.2-6: CMG SPECIFICATIONS*

Quantity Symbol Dimensions X axis Y and Z Axis

Momentum 2H ft-lbf-see 60.0 200.0

2J G in-ozf-sec 2 5.8 19.2
Gimbal Inertia

Gimbal Friction Tf in-ozf 0.03 0.05

Torque Capacity Tc in-ozf 20.0 30.0

Weight lbf 54.0 90.0

Power watts 11.0 16.0

Steps - Soft degrees +60.0 60.0

Hard degrees +65.0 +65.0m

*All values for twin rotor pair

4.2.2.4 Reaction-Centre [ System -- The synchronous-orbit-altitude reaction-

control system is identical to that of the low-Earth-orbit _ mfiguration except
for the amount of propeltant required. There are 16 reaction-controI jets (four
clusters of four engines) Located 15 feet fore and aft of the center of gravity. _-

Each engine can be modulated _n thrust between 4 ar,_ 40 lbf. The lower levels
are used during CMG desaturations (1.4-second pulse ); the higher thrust levels
are used to obtain adequate control authorities for docking. The characteristic_t
of this system are summarized in Figure 4.2-7.
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Detached Soft-Gimbal
MOT MOT

Reaction Control Jets 4-40 ibf 4-40 Ibf

Thrust 4-40 Ibf 4-40 Ibf

Number Required 16 16

Weight 2.5 lb ea. 2.5 lb ea.

iSp 300 300

Lever Arms - Pitch 15 f_ 15 ft

Lever Am - Roll 7 ft 7 ft

Tard_e and Plumbing

Number of Tanks 2 2

Total Weight 139 lb 80 Ib

Propellant

CMG Desaturation 5 lb/year 5 lb/year

Cancel Initial Separation Rates 5 lb 5 lb

Docking (35 lb ea) 245 lb/6 months 35 lb

(Initial docking)
RCS Rendezvous (12 lb ea) 84 lb/6 months 12 Ib

FIGURE 4.2-7: REACTION CONTROL SYSTEM CHARACTERISTICS

4.2.2.5 Sensor Characteristics m The sensor concepts generally follow those
of the low -Earth-orbit.

For the coarse mode, four star tr_kers ring the telescope in the vicinity of the
primary mir.or; a fifth tracker is mounted along the telescope optical axis in
front of the secondary mirrors. Each star tracker is of the OAO type with a
45 degree square field of view capable of tracking stars brighter than +2 magni-
tude. With this array of star trackers, approximately 83 percent of the celles-
tial sphere is covereo: this is adequate to provide reference for any celestial
orientation.
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The intermediate-level star tracker is again mounted in front of the secondary

mirror. It may be either a gimbaled beam splitter photomultiplier or an image
tube. Of the two, the latter offers several operational advantages in that it has

a higher linear range (easier acquisition) and it presents a continuous display
of the telescope field-of-view that would be available for use by the MORL crew
in selection of targets. It has drawbacks, however, because of its size, weight,
power, and complexity (Reference 30). The final choice between these two
sensors will require a detailed design evaluation.

There are two fine pointing sensors: one on-axis sensor integral with the high-
dispersion spectrograph to satisfy, its accuracy requirement and one off-axis
sensor on a movable base to satisfy requirements for the other experiments.
Althou_ sensor requirements have not been examined in detail to determine if
a single off-axis sensor is adequate, the basic requirements are similar enough
to make this probable. The fine-pointing sensors consist of beam-splitter type
photomultiplier sensors, as shown in Figure 4.2-8. Light collected by the tele-
scope is focused at a mechanical beam splitter where it is divided four ways; the
four reflections then impinge on separate photomultiplier tubes. Reterence 30
has shown that the basic performance of the fine error sensors are noise limited.
Four potential sources of such noise in this type sensor am discussed below.

Signal Current Noise -- An optical signal can be thought of as the arrival of dis-
crete photons and, as such, are subject to fluctuations or noise. For high-
intensity optical signals, these fluctuations are swamped out by the average
value of the signal and produce large sing__!-to-noise ratios. The signal current
is the predominant noise source in the MOT fine-pointing sensors.

Dark Current Noise -- The photocathode of a phototube normally emits electrons
v,hen thermally excP_d. For the fine-pointing sensors, this noise s._urce is
appreciable only at much higher magnitude stars (i. e., +18).

Load Resistor Jobalson Noise- ihis source is negligible for the MOT application.
Its value can be reduced by increasing the load resistance. Calculations indicate
that practic_i resistance value_ are seven orders of magnitude above where this
noise source becomes appreciable.

Electronics Preamplifier Noise m This norse source is also normally =_egligible
due to the ,-'-:tremely high gain ava,:lable in photomultiplier tubes (current am_:.li-
fications of 107) reduce the purely electronic amplification required. There are
indications, however, that the electron multiplication in the photomultiplier is
not completely noiseless, since it decreases the signal-to-noise ratio by G/I+G,
where G is the gain per dynode stage. Typical photomultipliers have a gain of 3
to 4 per stage, so the contribution of this additional noise is nominal.
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Considering these noise sources, the detector signal-to-noise ratio (S/N) can
be expressed as:

s/_ = I R XPX
1/2

where P), = photomuRiplie- quantum efficiency

R), = photon arri, al rate (photons/second)

_f = detector bandwidth, cps

id = photomultiplier dark current noise

i = photomultiplier signal current

G = gain per dynode stage

For id << i, and G >> 1, it is seen that the sensor S/N ;-aries with the input sig-
nal. At a given input signal level, the only detector parameter available for m_-
proving the S/N is the quantum efficiency. For a typical sta_.°of-the-art detec-
tor, Figure 4.2-9 shows the pertinent parameters, These parameters can be
used to derive the quantum efficiency of the photomultiplier as a function of wave-
lengh as shown in Figu re 4.2-10. Also shown is the spectral distribution of a
10th-magnitude Class-A o star (using the entire MOT collecting aperture) rind
the product of the quantum efficiency with this incident energy.

Parameter 3

Spectral response S-20

Number of stages 14

Photocathode material K-Nr.-Cs-Sb

Photocathode diameter 1.63 inches

Maximum cathode se_itivity* 0.064 amps/watt

Anode sensitivity* 1.4 x 106 amps/watt

Current amplification * 2 x 107 = 3.24/stage

Equivalent noise input (25°C) * 7.5 x 10 -13 lumen = 1.75 x 10 -15 watts

Window material Coming lime glass %

•At 2400V anode-to-cathode voltage, unequally distributed.

Figure 4.2-9: RCA 7265 PHOTOMULTIPLIER TUBE

If this product is integrated over the wavelength, approximately 7 percent of the
incident photons are converted to electrons by the photoemissive surface. Restrict-
ing the discussion to a siugle axis, since the photomultiplier noise in white, the
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noise at null will be uncorrelated and additive; but, the signals will subtract
exactly. The sensor S/N at null will then be zero, and the noise will correspond
to twice that of a detector receiving one-quarter of the light. At saturation, the
signal will correspond to one detector receiving one-half the light. Because the
null noise measured in arc-seconds is the quant':ty of interest and the sensor
linear range must be tailored to achieve it, the maximum signal-to-null noise
ratio is the major quantity of interest. Using the spectrums of Figure 4.2-10
and Equation 4.2-1, the sensor S/N can be plotted versus star magnitude as
sho_,rn in Figure 4.2-11. The difference between the on- and off-ax's sensors
is due to the 23-percent light sharing for on axis, while the off-axis sensors use
the entire collecting aperture. Fer the on-axis sensor, linear ranges down to
±0.05 second are fc_,mible and sensor noises down to 0.009357 second are poss_le
wit_. 10th magnitude stars. Since the system stability required is -_0.03 second
(at 10th magnitude), the on-axis sensor is felt to be within present state of the
art. For the off-axis sensor, the minimum linear i_ange is governed by how well
the Ritchey-Chretien system can correct for off-axis aberrations. The present
design anticipates a _-15-minute corrected field of view, and that the maximum
aberrations (at the edge of the field) will be less than 0.5 arc-second. From the
star-population charts of Reference 30, op the average there will exist at least
one 12.5 magnitude star in this field of view, giving a sensor S/N of 100. With
the 0.25-arc-second linear range, this S/N corresponds to a sensor noise of 0.0025
arc-second, which may be excessive for the 0.01-arc-second system stabilization
required. There are several possible ways in which this could be improved.

• Use of a larger field of view so that higher-magnitude guide stars could be
_usCd

• Better correction of the main opt_.cs

• Use of lower-bandwidth systems (and, thus, sensors)

For example, "using a 1-radian-per-second system (1 cps sensor), the cor-
rcspo,_ag sensor ugise would be 0.000791 arc-second, which is accept-
able. (0. 001 arc-second was initially allocated to sensor noise.)

It must be remembered, that the sensor characteristics used are for an off-the-
shelf detector _td that improvements "_ndetectors, as well as methods of minimiz-
ing the effects of sensor noise, will be developed. These calculations also

assume that the collecting optics can be made sufficJontly efficient and that the
detector drifts from thormal and aging effects are not excessive. Becau_r _he
main optics are used for light collecting and only one additional refracting ele-
ment is anticipated, the collection efficienc3 - should easily exceed 80 percent.
Since the drift need be only compatible with the S/N, tolerances up to 1 percent
per day are permissible. Further investigation is warranted to ensure that
these requirements are not excessive.
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4.2.3 Analyses

This section describes analyses of the synchronotas-orbit disturbance environ-
ment and the soft-gimbal mode. The former was accomplished to determine the
effects of orbit altitude on the MOT ACS problem, while the lat?er was accom-
plished to further the attitude-control comparison of the s')ft-gimbal and detached
MOT.

4.2.3.1 External Disturbance Summary-- From the study of the synchronous-
orbit external disturbances, it was determined that solar pressure predominates;
the gravity gradient is the only other appreciable source. In the low Earth orbit,
the gravity gradient predominanted with aerodynamic torques being the only other
appreciable source. Figure 4.2-12 shows a comparison of the low-Earth- and
synchronous-orbit disturbance environment. The synchronous-orbit disturbance
torques are down by two orders of magnitude. The disturbance momentums would
be likewise down on a per time basis; however, the numbers shown are felt to
represent a more valid comparison. For the low Earth orbit, the Earth can
cause disruption of the experiment every half orbit, so the CMG's could be de-
saturated at that time.

Low Earth Orbit Synchronous Orbit
Detached MOT Detached MOT

Torque (X axis) 2.3 x 10 -3 ft-lbf 9.1 x 10-5 ft-lbf

Torque (Y axis) 0.22 ft-lbf 0.0011 ft-lbf

Torque (Z axis) 0.22 ft-lbf 0.0026 ft-lbf

Momentum (X axis) 3.85 ft-lbf-sec/half orbit 7.3 &-lbf-sec/orbit

Momentum (Y axis) 353 ft-lbf-sec/half orbit 47.6 ft--lbf-sec/orbit

Momentum (Z axis) 350 ft-lbf-sec/half orbit 180 ft-lbf-sec/orbit

Figure 4.2-12: DISTURBANCE COMPARISON

In the synchronous orbit, observations can be continuous, and it is reasonable
to expect the CMG's to store the disturbances for the maximum observation time;
in this way, requirement for reacquisition is eliminated. Since low-dispersion
spectJroscopy experiments average 17 hours, the CMG's for the synchronous orbit
were sized to provide continuous control for a full orbit. This sizing is also con-
sistent with the CMG momentum required for telescope maneuvering.

The only cfher important disturbance source is that due to micrometeorftes. The
impact of a meteorite of appreciable size with the telescope can induce excessive
pe'.lting errors. The analysis indicates that the probability of such an event is
quite low, It is less than 0.003 per observation period. Also, since the event
is of such a short duration, its effect on the anticipated experiments is fairly
negligible.
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4.2.5.2 Orbital Geometry. and Configurations --Due to the solar panels being
gimbaled around a single axis (the Z axis}, the MOT has a preferred roll orienta-
tion. Figure 4.2-13 depicts and defines the orbital geometry of this situation.
!o is seen that retaining the Z axis in a plane perpendicular to the Sun LOS satis-
fies the solar-panel pointing requirements (with the solar-panel gimbal degree
of freedom), while freedom in Euler angles e and 0 allows the telescope to
observe in any direction. For the solar pressure disturbances, only ¢_is of in-
terest since the disturbances are expressed in respect to MOT body axes.

F_gures 4.2-14 and 4.2-15 list the parameters used in generating the disturbance
calculations. The synchronous-orbit configuration is based on data presented
in Section 3.3.

The low-Earth-orbit configuration based on data given to General Electric during
the previous MOT study was analyzed to permit a direct comparison of disturb-
ances for the low-Earth- and synchronous-orbit altitude MOT's.

The following sections present results of the analyses of the external disturbances
for the synchronous orbit.

4.2.3.3 Solar Pressure --The electromagnetic radiation from the Sun is a pri-
mary source of angular disturbance to the vehicle. From quantum theory, this
radiation energy can be converted to an equivalent pressure. To form the true
torque, this pressure must be integrated over the entire vehicle, taking into
account shaded areas, type of reflection and absorbtion, etc. This leads to a
very complex analysis; thus a simplification is normally made te approximate
the vehicle by flat plates with given center-of-pressure (cp) to center-of-mass
(cm) displacements and uniform reflection properties. For the inertially orien-
tated vehicle, the resulting torques are steady state and the momentum accumula-
tion is proportional to time. From Reference 32, this radiation pressure can be
expressed as:

p =So cos_ cos(_ + _)-:-O (i - A) eos(_P--_)

where P = solar pressure normal to surface

r = solar pressure parallel to surface {shear}

s
= solar radiation com_tant = 9 x 10 -8 lbf/ft2_C

= angle between solar LOS and normal to surface

p = surface refleetivity

A, B = type of reflectance {equal to 1 for diffuse reflectance}
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FIGURE 4.2-13

ORBIT AND ORIENTATION GEOMETRY
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A,
- Ay

Soft Gimbal Mode
Detached

Parameters and D_mensions MOT MOT MOT-MORL

Inertia-- Ft Lbf Sec 2
Ix 25,100 21,100 991,960

Iy 165,000 157,600 1,796,890

Iz 163,200 156,890 2,212,840

2
Projected Areas- Ft

Ax 180 --- 886

Ay 810 810 2,000

Asp 220 0 1,720

CP-CM Offset-- Ft

Lxx -16.4 .... 20.7

Lxy +0.5 --- ±2.7
Lxz +0.5 --- +2.7

Lyx 412.5 +13.3 +16.4

Lyy +4.5 44.5 +5.7

Lyz +0.5 ±0.5 +2.7

Lpx ±0.1 --- +17.7

Lpy *0.5 --- +2.7

Lpz ±0.5 --- ±2.7

Solar pressure based on 19,330-nautical-mite orbit at 45-degree ecliptic
inclination.

Figure 4.2-14: SYNCHRONOUS-ORBIT-ALTITUDE
C ON FIGURATION PARAMETERS
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Soft Gimbal Mode
Detached

Parameters and Dimensions MOT MOT MOT-MORL

Inertia-- Ft Lbf Sec 2
Ix 22,000 22,000 382,000

Iy 133,400 133,400 2, !I0,000

Iz 132,700 132; 700 1,940,000
2

Area- Ft

Ax 125 0 3 10

Av 570 570 1,700

Asp 222 0 1,700

CP-CM Gffset-- Ft

Lxx -15.5 .... 19.3

Lxy +0.5 --- ±2.7
Lxz +0.5 --- -_2.7

Lyx +12.3 +12.3 +15.6

Lyy +4.5 -4, 5 +5.7

Lyz ±0.5 ±0.5 ±2.7

Lpx ±0.1 .... _10 7

Lpy e:0.5 --- ±2.7

Lpz ±0, 5 --- _-2.7

Figure 4.2-15: LOW-EARTH-ORBIT CONFiGURATICN PARAMETERS
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For calculating solar torques, the vehicle may be approximated by the surfaces

shown in Figure 4.2-16. ,¢_l.r torques arise only from three surfaces shown be-

catLse the Z surface must remain parallel to the solar line of sight due to solar-

panel orientation requirements. The torques from the surfaces are evaluated in

the !'ollowing paragraphs.

Antioptic End of Telescope (Ax) --From the previous stud)', a flat white paint

with a diffuse reflectivity of 0.2 was assumed. The force on Ax is:
i

[= -c cosO cos(c0 +3 i - AX-c cos_sin

The radius from the telescope cm to the surface ep is:

rx= fxx i+ txy _ +t xz

and the torque is:

Yx= ['xx Fx

+x ] 2 ]= cosO sine i + c (cos 2cp + _ cosO)

[ AxtxyS 2 Ax'xxS ]+ - (C°S2 _ + _) ec _ cos cos _P sin _

Solar Panel- The solar panel will always be facing the Sun, thus, the normal
pressure can be resolved as:

- 5 _S cos (P [ - ASp cFSp = 3 ASp c

- = # _+,,_ j+ tpz krsp * px _py

Tsp = rsp x FSp = c sin [ + cos _C.

[5Asp'px S 5 AspJ[py S ]
sin _ + COS _

e 3 c

Transverse Surface (Ay) --Care must be taken because different sides receive

the incident radiation depending on the sign of _a (shielding effect). Treating the

two transverse surfaces separately, the torques on the +y surface (++) can be
expressed as:

,,_o)+,,,<:+_°,] [_= cos _ cos(++-Fy+ t. c (2 c

+ cos(7 - _) j
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which can bc simplified to:

ry_ ---l[yx [ + t yy Y + _yz _

Ty+ = ry+ x Fy_.

Ty_._= c sin_ sin(_ + _) i + ' sin$ cos_P

[Ay'yyS AYr_x S 2]
- - sin{Pcos_P + sin_P sin(_+ )C C

For y>_>0.

SimilarIy, for the -y surface (- _ ):

]Fy_ [--_- cos(_ + _)sin(_ + _) {'+ cos(2 + _) cos(_ + _-= l

which can be simplified to:

= _ AyS sin(Pcos ._ [- sin_ - sin_ +I_Y - C

ry_ = ty x r- fyy j + fyz _"

Ty_ = ry_X Fy_

ry_ = sin ¢ (- sin t0 + - {"- sin ]"C ¢

AY Ivy S Ay I S 2- c sinCP cos _ + - cyx sin_(- sin¢_ + _
m

For 0 > ¢> - ?r.

Combining these two surfaces into a single equation gives:
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Ay fyzS Y_yz3

"ry= _. c sin_ sin(l¢l + _ i �csinl_l cos

]Ay j[YY S Ay [ __S a;in0_ I + 2- sin ¢_ cos O + -- sin cp )
C C

The equations can thus be combined to obtain total solar pressure torque:

hx _xz S 5 Asp IpzS_ .a.

T x cos¢_ sin_ • sin¢_c 3c

Ay lPyz S 2

c sin ¢D sin(laq + _-)

AX fxz S 5 Asp _pz S
ry cos _ (cos _ 4 2) + cosC C

Ayty s
+ COS (P sin ]CpI

Ax IxvS(c 2 _) AXfxxS
- - os ? _P+ -- cos cos g) sin ¢0

Tz c 3 c

5Asp fpx S 5Asp _py S
- sin_ - cosCP

3c 3c

Ay tyy S Ay lyx S 2,

C C

When the configuration parametel _ from Figure 4.2-14 and 4.2-15 are sul :tituted

into these equations, the values shown in Figure 4.2-17 result. Here, the MORL

requirements are obtained by subtracting the soft-gimbal MOT requirements
from those for the combined vehicles.

4.2.3.4 Gravity Gradient -- Because the orbit radius varies throughout a

satellite, integratio n of the gravitational attraction force over the body leads to

a torque term that, for circular orbits, is expressed by:

ffLxl (Iy - Iz) (j K) (k K)

, 3 W2

;:1 = "_- (Iz - Ix)(_ K) (kK-'_ym X
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Lz, Ly, :'z = body components of torque

o_J = orbital rate

Ix, Iy, I z = vehicle principal moments of iner':ia

i j k = body fixed-coordinate system

K = unit vector along local vertical

This situation may be visualized as the K vector rotati_- in the inertial i j k co-
ordinate system at the orbital rate. The maximum torque for each axis occurs

when K rotates in the plane formed by the other two axes of the _ j k coordinate
system, _xld at a time when it is at a 45-degree angle to both. The extremum
tozques for the synchronous orbit thus become:

-8
1.59 x 10

Lxm = 2 (Iy - Iz) cos 2_t

1.59 x i0-8
LYm = 2 (Iz - Ix) cos 2{0t

-8
1.59 x 10

Lzm = 2 (Ix - Iy) cos 2eat

These torques are zero averaging; they oscillate at twice orbital frequency.

It is also of interest to determine the long-term accumulation of momentum. The
worst case occurs when the local vertical rotates in a plane that bisects two axes
and includes the third, the torque about this latter axis becomes:

2
L - 3_

2 (A I) cos2a_ t

Integrating to determine the maximum momentum accumulated gives:

3_ 2 T

HGG - 2 AI J_a c°s2 _ tdt
v

2

_ 3¢_4 AI [T �_1sin2_T]

For a complete orbit, this reduces to:

1.59 x 10 -8
HGG/ORBIT = 4 (hi) T

where T isthe orbitperiod,and AI isthedifferencebetweenthe moments of
inertia of the other two body axes.
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To determine the disturbance momentum applied to the telescope, its inertias

are used directly in the equations above. For the MORL, hgwever, the inertias
of the combined MORL and MOT are used, and then the distrubances frorn the

MOT. treated as a separate body, are subtracted. The amplitudes of the gravity

gradient torques and momentums thus become as shown in Figure 4.2-18.

4.2.3.5 Micrometeorites--Distrubances from micrometeorites are probably

the least u ell defined of all the disturbance sources. This is due to the lack of

knowledge of the mierometeorite flux density and the corresponding velocity dis-

tribution. Figure 4.2-19 shows a composite of the current esthnates of the

meteoroid flux density. It is observed that the spread in these estimates is over

four orders of magnitude, which lends little confidence to the accuracy of final

results. In spite of this uncertainty, the calculations of micrometeorite disturb-

ances are useful for gross estimation oi their importance. As shown by Curve 1

of Fig-ure 4.2-19, the micrometeorite flux density varies with the particle mass

according to:

- 4/3 i0-14" 4F = In x

where

F = micrometeorite flux density-particles/meter 2 - see

m : micrometeorite mass -gm m

This flux density can be converted to an equivalent pressure by integration as
below:

_m Fm Vp
P= dm

ge

Where Vp is the mierometeorite mean velocity, assumed 22 km/sec (Reference
34). This expression can be integrated yielding an equivalent micrometeoroid
pressure of:

4 Vp 10_11 lbf/ft 2P - =7.3x

1010.4 ge

Again, when compared with the secular solar pressure of 9 x 10 -8 lbf/ft 2, the
micrometeorite average disturbances are negligible. An appreciable effect

remains, however, and that concerns the probability of a single impact inducing
appreciable vehicle errors.

Using the total area and a 20-hour observation, the meteorite flux density can be

proportioned to the number of impacts per observation. Using the vehicle inertia

and mean cp-cm displacement, the micrometeorite mass can be proportioned to
an induced vehicle rate.
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Doing so for the detached telescope, the results are shown in Figure 4.2-20.

Using the results of the h:itial servoelastic study, Page 162 of Reference 30,
a 0.21-arc-second overshoot is shown for an initial rate error of 0.2 arc-second

per second. Assuming this same correspondence at 0.01 arc-second, the corres-

ponding probabilities are in the neighborhood of 0. 003 per observation, which

would indicate a negligible effect. Probability of the disturbance causing loss

of acquisition (5 arc-seconds) can be seen to be negligibly small. The probability

that multiple impacts could induce appreciable pointing errors has been neglected

due to the extreme time coincidence required. An interesting conclusion can be

drawn by again referring to Curve 7 of Figure 4.2-19. This shows a large

difference in the micrometeorite flux density between that at low Earth orbit

and that in deep space. Although the magnitude of this effect is somewhat

controversial, its existance is corroborated by the Earth ch,st belts and ._atellite

test data, such as that from Pioneer I and Mariner II. To induce a rate of 0.0t arc-

second per second however, a miccometeorite mass of 10 -4 gram or greater is

required, and in this area the currently hypothesized differences between low-

Earth- and synchronous-orbit altitude flux densities are lost in the uncertainties
of the data.

Another effectis thatof periodic micormeteorite showers, during which the flux

densitiescan increase by a factorof 20. These effectsare predictableand in

general not excessive, so they have been neglected in the above calculations.

4.2.3.6 Aerodynamic Torques- Aerodynamic torques at synchronous-orbit

altitudeare completely negligible. Reference 33 gives the average electron

concentrationof the upper ionosphere (5.6 Earth radii)at 70 electrons per em 3.

Because proton density i_ equal to the electron density at the altitude,this

concentrationcorresponds to a d:ynamic pressure of 2.6 x 10-12 Ibf/ft2. This
value is roughly four orders of magnitude less than the secular solar pressure,

so the aerodynamic disturbances are neglected.

4.2.3.7 Magnetic Torques- No source of significant disturbance arises from

reaction against the Earth's magnetic field, if the vehicle is not designed with a

permanent magnetic dipole. Since no inherent requirement for a magnetic dipole

is known, magnetic torques are neglected as a source of disturbance; however,

it remains an outside possibility for use in desaturating the CMG's. This would

provide continuous desaturation and permit use of very small CMG's. Initial

calculations indicate the power consumption would be prohibitive (roughly 1.3

kilowatts); however, the use of superconducting coils and configuration control
coulci alleviate this situation.

4.2.3.8 Solar Corpuscular Radiation -- Corpuscular radiation -- high-speed

protons and other charged particles --has a flux density that varies appreciably

(dependant partly on solar flares) but an average value has been estimated at

10-23 gmm/cm 3 at a mean velocity of 300 kin/see (Reference 36). This value

corresponds to an equivalent dynamic pressure of 9 x 10 -12 lbf/ft 2. Again, when
compared to the pressure from electromagnetic radiation, this dynamic pressure
is considered negligible.
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4.2.3.9 Soft-Gimbal Disturbarecs -- A,n-_ivsis 0_ ttle soft-gimbal suspension

indica:es that the MORL exerts a toru'_c of 0. _,_32 ft/lbf for every degree of

misalignment between the MOT and ?iORL, The MORL attitude-control sys-
tem is accurate only to +0.5 degree, the largest errors are due to the attitude

references. The maximum soft-gimbal torque could thus be as large as 0.0316
ft-lbf, if this torque is assumed to be an undirectional maximum, MOT CMG's of

2700 ft-lbf-sec/orbit capacity _ould be required. This size is unwarranted; the

requirement can be eliminatea by updating the MORL reference system from the

MOT CMG's to prevent their saturation. This technique would also permit the

CMG's to be much smaller than the selected 200-ft-lt)f-sec capacity, if the- CMG
gimbal friction makes this desirmAe.

4.2.3.10 Tota; D'cturb_'.nce Env_-onment--The preceding analyses can be used

to determine the total disturbar,ces that the attitude-control system must over-

come. These analyses indicate that the only significant sources are due to solar

pressure and gravity gradient. While an exact solution to aetermine *he maximum

disturbance of the combination involves solution of rather complex transcendental

eq:_tions, some useful conclusivns can be derived by observing the quasi worst-

case condition rhown in Figure 4.2-21 (symbols per Figure 4.2-13).

Radians Radians Radians Combination

X Axis _/2 0 17/2 Additive

Y Axis 0 0 _/2 G. G Alone

Z Axis rr/2 Y/2 _t/2 Additive

i = 45 ° INCLTNSD ORBit"

Figure 4.2-21: MAXIMUM DISTURBANCE ORIENTATIONS

It is -,een that the X- and Z-axis maxim_,m disturbances combine directly a¢ the

orientations shown. No such orientation was found %r the Y axi3 but the gravity
gradient predominates; it is thus considered to be of little signigicance. Max,-
mum disturbance torques and momentum storage requirements for the various

configurations are given in Figure 4.2-22.

Figure 4.2-23 shows a typical history of the total-disturbance environment for

the Z axis. These disturbances are based on the worst-case orbital-ecliptic

inclination of 45 degrees. Other inclinations csn give considerably smaller

disturbance levels. Other changes, such as relocation of the solar panels, can
also minimize these disturbances.

4.2.3.11 Soft-Gimbal Analysis _ The soft-gimbal mode was conceived _s a

result of the attitude-control-panel discussions (MOT low-Earth-orbit midterm)
concerning the stationkeeping problem in the "floating socket" mode. Because

of the timing, it was not possible to study the soft-gimbal mode in the same depth
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as that of thu detached mode. Consequently, questions remained at the conclusion

o[ the low-Earth-orbit study as to whether the couph'd MORL and MOT attitude-

conlrol svstem_ remained stable and if stable, what effect this coupling might

have on the ACS pointing performance. The soft-gimbal mode thus received
much more attention in this study, thereby permitting a mere valid comparison

of the soft-gimbal and detached modes. Equations of motion of the system are

derived below: these equations were programmed in an analog computer simulation.

Figure 4.2-2,t shows a sketch of the dynamic model and quantities used to derive

these equations. The spring geometry considered consisted of thre sets of

t-_o springs equally spaced between the MORL and the MOT gimbal, which, in

turn, was assumed massless and frictionless. The motion was restricted to be

coplanar only in order to accomplish the task within the study contract con-

straints. Forces and torques acting on th(_ MORL aJld MOT are derived by

assuming relative displacements across _:he geometric orientations of the spring

sets; from geometry these displacements can be related to the system indepen-
dent va_-iables as below.

dZ1 -- Zm - ZT + _,-r, am - _t 0T

dZ2 =Zm - ZT + lm °m - J[t OT
(1)

dX 1 =X m -X T + r m ¢0m + r T OT

r m r T

dX2 --Xm -XT * -2-'¢9m 2 OT

To obtain the forces, the springs were defined in equivalent X- and Z-axis spring

constants as below, realizing that due to symmetry, the second and third spring
sets will he identical.

KXI = 2K cos 2 00

KZ 1 -- 2K sin 2 O0
(2)

KX 2 = 2 K cos 2 O0

KZ 2 = 2K sin 2 O0 sin 2 30 °

The forces and torques can thus be expressed as:

Fxm = - FxT = -_ Fxm I + 2 Fxm 2

:: KX 1 dX 1 + 2KX 2 dX 2

(a)
Fzm =-FzT; Fzm 1 + 2 Fzm 2

= KZ 1 dZ 1 + 2KZ 2 dZ 2
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r DI

F _m - F -_2 Fxm 2 _ _ 2 Fzm 2 J_mT m zm I xm I rm 2

" FzT _T

Substituting the deflections from Equations (1) and the equivalent spring constants

from Equations (2) into the forces and torques (Equatiens (3)) and simpliD'ing,

the coupling becomes:

= - 6K cos 2 80Fxm (X m - XT)

Fzm - - 2K sin 2 e 0 (1+ 2 sin 230-_ [_m- Z T

+ fm0m - _T 0T]

rT rm r m OmT 2Kcos200 3 2 0 T - 3 2

sin 2 00 (11-2 sin 2 30 °) _T[Zm-ZT +_mt0m - _TOT]
TT=2K

t_

The linear X-axis oscillations are not coupled to the other variables; thus, it

will not enter the stability question and was neglected from further analysis.

The eqv, ations then become as expressed in Equation (4), where the spring couplings

are defined and evaluated in Equation (5). These equations are expressed in block

diagram form in Fig-are 4.2-25, which reflects the concern as to whether or not
the vehicles retained their stability. This analysis is only a preli.minary effort;

the full system is strongly coupled in eleven degrees of freedom.

"Fz m" "_ KZ -Kzt _ KZO AZI

= K_O q_mTm -%Z -K (4)

T T K0Z KO¢0 -Ko0 OT
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_Z Z TZ m

• 2
K Z _2K sin 2 O0 (1 + 2 sm 30 °)

KZ¢ = 42K sin 2 O0 ( 1 _ 2 sin 2 30 °) _m

KZ0 = +2K sin 2 00 ( 1 + 2 sin 2 30 °) t T

, K_Z = +2Ksin 2 00 (1 + 2 sin 2 30 °)1ha

K = +2K sin 2 00 (l + 2 sin 2 30 °)j_m 2

+3K cos 2 00 rm2
(5)

K¢90 -- +2K sin 2 O0 (1 + 2 sin 2 30 °) fT

+3Kcos 2 190r m r T

KeZ = +2K sin 2 00 (1 + 2 sin230 °) _T

KOW = +2Ksin 2 00 (1 + 2 sin 230 °)j_m_T

KOO = *2Ksin 2 O0 (1 + 2 sin 230 °)_T 2

b or the following set of values based on the synchronous-orbit configuration, the

coupling terms become:

K = 0.0424 lbf/in

=I in."T

itm :- 42.8 ft.

eo = 54.7 dcg.

r = 8.15 ft.
m

r T = 7.13 ft.

K Z = 0.0846 lbf/in

KZ_ = 0.76 lbf/deg

KZ0 = 4.1 x 10-71bf/_ec
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K0Z = 0.00706 ftIbf/in

K0_ = C.0632 ftIbf/deg

K00 = 3.42 x 10.-8ftIbf/s_ec

K_Z = 3.62 ftIbf/in

K = 33.1 ftIbf/deg

Ke_0 = 1.62 x 10-4 ftIbf/s_c

4.2.4 System Synthesis and Performance

This sectionpresents a synthesisof tbe three attitude-controlsystems used in

the analog sil_a!ation.The firstsystem is a 10-rad-per-second MOT loop,

second is a I.-tad-per-secondMOT loop, and the third is the MORL attitude-

control _ysmm. Using the analog simulation of these control loops, the
stabilityof the ACS for the soft-gimbal mode was examined.

4.2.4.1 10-Ra,' _er-Second Attitude-ControlSystem -- Figure 4.2-26 shows a
block diagram of thissystem, which is identicalto thatused in the low-Earth-

orbit study. The CMG was equipped with a passive gimbal damper thatresulted

in a 4.2-rad-per--second first-orderCMG transfer function. The compensation

network consisted of a 7.4- to-1 double lag-lead network to achieve a very high

gain and a 13.3- to-1 double lead-lag network to achieve the dampir.,gneeded near

crossover. In addition,a notch filterconsistingof a complex pole zero pair was

used to stabilizethe amplitude resonance thatoccurs at the 53.7-rad-per-second

firststructuralmode frequency.

Bode diagrams for this loop are shown in Figure 4.2-27, and some sample time

historiesare shown in Figure 4.2-28. Although this is a conditionallystable

system, itstransientresponse iscuite satisfactory. Trace A of Figure 4.2-28

shows the s2_p response without the vehicle flexibilityor notch filter;Trace B

shows the corresp..ndingresponse with both inthe loop. Even with the notch filter,
the structuraland flexibilityeffectsare excited. This conditionillustratesthat

structuralflexibilitystrongly influencesthe practicabilityof a 10-rad-per-second

controlloo, italso demonstrates one advantage of lower frequency outer loops
because st_,c_uralcoupling is not as important.

Itwas found inthe previous study thatthe CMG gimbal frictioninduced a system
limit cycle;indeed, thiswas the reason the initial1-rad-per-second MOT-ACS

was resynthesized to a 10-rad-per-second system. Trace A of Figure 4.2-29

shows this limitcycle with the passive CMG. Ifan activegimbal rate loop is

closed around the CMG, the effectsof this frictioncan be reduced to that shown in

Trace B. This data was taken with a 4.2-tad-per-second first-orderfilterdriving

a 15-cps CMG. In thisway, the overall loop dynamics were nearly preserved. The

effectisto enclose the frictionin a very tightinner loop, thereby potentiallyrelax-
ing response requirements on the outer loop.
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•t. 2..!. 2 1-l{ad-Per-Sccond Attitude-Control System--The block diagram for

thi.-, loop is shm_n in Figure 4.2-30. Differences bet_veea this and the previous

loop include th,' use of all active CMG. the elimination of a notch filter, and the use

of a single lead-lag (differentiator) network because C.MG dynamics occur above

the crossover frequency. Bode diagrams for this loop are shown in Figure 4.2-31,

and its tl ansient response is sho_n in Figure 4.2-32 both with and without gimbal

friction. While tile gai'l of this loop is significantly less than that of the previous

looi_, the inverse stiffness is still e×tr, rlely large--332 ft-ibf per are second.

The low-frequency external disturbances and correctiol:s required for velocity

aberrations thus induce r_cgligible pointing errors _ 8 x 10 -8 and 3 x 10 -11 arc

second, respectively.

-t. 2. -1.3 Detached Mode Performance --The two previously described systems

were simulated on an analog computer. Figures 4.2-33 through 4.2-35 show 1he

computer diagrams of this sinmlation (the diagrams also inch,.de the soff-g;,mbal

simulation discussed in the following sections). Sensitivity of the loops to sensor

noise was determined using this simulation. Figure 4.2-36 shows some typical

time histories of the results. The results for the 10-rad-per-secondloop are

shown in Figure 4.2-37. Small amounts of no"_se are beneficial for the passive

CMG in that it breaks the CMG gimbal friction. Use of the active CMG results in

a considerable performance improvement in the absence of sensor noise. This

improvement occurs because the active CMG prevents a system limit cycle by

enclosing the gimbal friction in a tight gimbal servo loop. It is seen, however,

that a sensor-noise level as low as 0. 003 arc second can again induce this limit

cycle. At highe'" val-ms o Z sensor noise, the limit cycle is again broken, and the

perfor'_al ce of the two systems would eventually be expected to approach each
otber. Differences between the two active-CMG curves at different friction levels

is attributed to errors in estlrnating the ma._imum pointing errors, rather than

an increase in performance with higher gimbal friction.

Time hist, "ies for the 1-rad-per-second loop when subjected to .' _.nsor noise are

shown in _ ;ure ,t. 2-38. Results of these (and other) tests arc shown in Figure

2- 2¢J. Tile sensor noise again induces a limit cycle, the amplitude of which is

_ig ,cantly higher than that of the 10-rad-per-second loop. However, the 1-rad-

per-,_econd loop e::hibits better performance in the presence -d higher sensor-noise

lev,'ls. T',e lower loop frequency also permits the use of lower-frequency sensors.

TI, is decrease in sensor noise is sllown in Figure 4.2-40 for the 0.5- and 5-cps

off<,.xis fine-pointing sensors. Using these sensor characteristics, the results

of £ig-ures 4.2-37 and 4.2-39 can be plotted with respect to star magnitude

(::oure 4.2-41). The curve for the 1-rad-per--second system is somewhat in

error since a 5-cps censor was as::.d for the data of Figure 4.2-39; however, the

difference is not expected to be large except at higher noise levels. This curve

indicates thst the pointing performance requirements can be maintained for stars

with magnitudes greater that, _:14. Within the ±15- minute telescope field of view,

at least one star of 12.5 magnitude or brighter will exist, so the present concept
is considcred ;easible.
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FIGURE _.e-37

IDIRTINO ERRORS. 10 RAD/_EC WITW SEINBORROIS]_
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FIGURE _.2-_O

SEt.OR NOISE VS STAR MAGNITUDE
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,I. 2.4.4 MORL Attitude-Control System--Per Reference 16, the MORL also

uses a CMG control system. The total CMG configuration consists of a twit-rotor

two-degree-of-freedom CMG (Y- and Z-axis control) _nd a twin-rotor one--degree-

of-freedom CMG (X-axis control). The Y axis was used in the simulation, for which

the inner g=lnbal axis of the CMG's are used for control The block diag:-am of the

entire control looF is shown in Figure 4.2--42. 'the first CMG has a 5--cps first- =

order-respon._ gimbal-rate servo; the second CMG is slaved to the first with a

2-cps position loop. The gimbal-torque-motar limits were set at 5 ft-lbf. The
CMG's receive their commands through gyro sensors that measure vehicle position

and rate, The gains of these sensors (as wele the other parameters except the

MORL inertias) were set at the values recom.qlendcd D:om the MORI_ studies. The

values used for these parameters are shown in Figure 4.2-43.
rad/sec

So0 -- h/O = 2.83
m rad/sec

rad/sec
K_ =-_/_ = 124

m rad/sec

t

Iv = 609,000 ft-lbf/sec 2

H = 550 ft-lbf-sec/rotor

-- 1 ft-lbf-sec 2JG

Figure 4.2-43: MORL ACS PARAMZTERS

These parameters combine to give a second-order transfer functionfor the MORL

= control system. This system exhibits a natural frequency of 0. 072 rad per second

and a damping ratio of 1.56. The transient response of MORL is shown in Figure
4.2-44. The first trace shows step response; the second shows response to a manned

= disturbance. This manned disturbance was equivalent to a 6-slug man accelerating

to 5 feet per second in 0.5 second at a 20-foot lever arm (_s defined in Reference

30). This disturbance induces 0.07-degree error into the MORL; the worst case

predicted by the MORL studies is O. 12 degree. The second traces also show the

effects of a torque limit on the outer gimbal servo The inner gimDal control

torques must be transmitted through this servo; thus, torque limiting induces

appreciable response changes. The torque limit cannot be accuraeely represented

on a coplanar simulation, so all otheI runs assume perfect outer-gimbal servos.

4.2.4.5 Soft-Gimba! Mode Performance _!n an attempt to determine the

stability and performance of the soft-gimbal mode, an analog simuta_ion of the \_
MORL and MOT attil{ude-control systems and the coupling between them was

performed. This was only a ps_ial analysis, and it is considered useful to
present sufficient details about the simulation so that its limitations can be
assessed.

The simulation of the MOT ACS corresponded to that previously discussed and

shown in Figures 4.2-26 and 4.2-30. Effects of gimbal friction and sensor noise

were included. The MORL control system corresponded to the one in Figure

4.2-42; the only nonlinearities included were the; gain loss relative to CMG gimbal
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a.'_/le and the saturation of the CMG torque motor. The coupling "rom the soft
gimbai correspcuded to Equation (4) (Section 4.2. S. 11).

The three degrees of freedom simulated were the MOI{L and MOT anTalar orienta-
tions and their relative Z-axis disi_lacements. Assuming that the MORL receives

J

a no torque from the soft-gimbal suspension: the result of a MORL crew disturbance
i onthe variables of interest is shown in Figure 4.2-45. Trace A shows the case

i for an angular disturbance only; Trace B shows the case for a combined angular
and linear disturbance. It is seen that the low-frequency linear oscillationsI

persist as would be expected because the two [arge masses are connected
through a very weak spring. If the coupling torques are added to the MORL and
MOT, however, the linear oscillations are rapidly damped as show_ in Figure
4 2-46. The conclusion, therefore was that the angular degrees of freedom are
indeed stable, and the MORL attitude-control system was damping a linear

degree of freedom Since this result was totally unexpectt:d, a linearized analysis
of the situationwas performed, neglecting the MOT angular degree of freedom.
With this assumption_ the soft-gimbal block diagram can be simplified as shown
Figure 4.2-47. The root locus of this system is shown in Figure 4.2-48, where
it is seen that the analysis predicts a 0.14 damped, 0. 006 cps second-order rea-

= ponse, which agrees quite satisfactorily with the computer results. The analysis
points :out how fortuitous was _.he choice of system parameters. Had a higher
MORL control frequency been chosen, the linear oscillations would remain un-
damped; however, for any reasonable choice of parameters, the system is never
unstable. It must be remembered, however, that the X-axis oscillations are
uncoupled and, as such, oscillations will persist ad infinitum. Over a long term,
MORL crew motions cculd build these oscillations up to an appreciable i_vel, and
some method must be found for damping this degree of freedom. Some suggested
techniques include.

1) Designing the spring suspension such that all degrees of freedom are strongly
coupled;

2) Use of soft-gimbal springs with appreciable amounts of hysteresis damping;

3) Mounting the soft-gimbal structure in a damper so that the suspension would
look like a series spring damper.

With the soft-gimbal stability ensured, the study progressed to the MOT pointing
errors as a res_,lt of MORL crew disturbances. Several cases were studied.

Sample time histories are shown in Figure 4.2-49. It was found that MOT
pointing errors were appreciably increased by the presence of MOT CMG gimbal
friction. Results of these tests are shown in Figure 4.2-50 for the 1-rad-per-
second systcm. The use of a high-frequency CMG and high-frequency control
loops is very beneficial in reducing pointing errors in the soft-gimbal mode.
The level of these ,_rrers is rather exhorbitant, however, when allocat.._s are

made for other error sources. This area requires further study as evidenced by
the traces in Figure 4. ,,-49, where it is seen tl,at the 10-tad-per-second system
remains essentially unaffected by soft-gimbal disturbances. However, the
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10-rad-pcr-second system has a disadvantage due to the noise and structural

flexibility problems it introdt, ces. I_ may thus be concluded that the soft-gimhal

control problem will be significantly more difficult than with the detached mode,

although present results indicate that pointing requirements can be met.

4.2.5 Copetuc._ons and Recommendations

This sect__on summarizes effects of orbit altitude and configuration on the attitude-

control problem: further study of some critical attitude-control problem areas
is recommended.

4.2.5.1 Orbit Altitude Comparison _Orbit altitude does not affect the ACS

pointing requirements: but, it can affect the performance ol the ACS cor,ponents.
Four such effects are summarized below.

1) The external d_.storbance torques at synchronous-orbit altitude are two crders

of magnitude less than those in a low Earth orbit. At low altitudes, these

external disturbances were beneficial; they were of sufficievt magni*ude to

smooth out the limit cycle induced by CMG gimbal friction. Because these

torques were cyclic, howe_'er, the system required the ability to work in the

absence of the,,:e dishlrbanee_. At synchronous-orbit altitude, the J_sturoances

arc not of sufficient magnitude of accomplish smoothing. Thus, external

disturbance effects are negligible as they neither hurt or help the system

performance.

2) In the synchronous orbit., continuous exposures are possible; the CMG is

then required to store the external disturbances for periods of 24 hours in-

stead of for the 40 minutes required in low Earth orbit. Even tLough the

external disturbance torques are greatly reduced: the momentums thus differ

only by a factor of two. ]'he synchronous orbit thus has a slight advantage;

however, it is not appreciable with the system concepts now under study.

3) The higher orbit alti.t-ade has less background radiation, that is, a "darker

sky." This effect is not appreciable because the extremely smell iield of

view of the fine pointi_g sensors (twenty milliontlls of a square degree) does

not permit the background noise to become appreciable with respect to the

signal from the guide star.

4) I__ synchronous orbit, a single observation will be accomplished in half.the
time for that oi the low Earth orbit. Since the ACS must maintain its null

within a given tolerance for the tot_.l experiment time, the synchronous orbit
will allow twice the rate of null shift as is allowable in the low Earth orbit.

This m'tl shift can arise from such sources as component aging and thermal

induced drift. This effect is not expected to be acute due to the extremely

narrow livear range (e0.1 arc-second) of the fine pointing sensors; how2ver,
past history indicates that it is an effect that warrants consideration.

S,,mmarizing, the degree of difficulty of the attitude-control problem is not

particularly sensitive to the orbit altitude; however, the synchronous-orbit

altitude looks slightly advantageous.
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•i. 2.5.2 OpcYatio ml Mode Comparison-- The attitude-control problem is quite

'. sensitive to the teh,scope's mode of operation duc to the effects of manned dis-

turbances. In the detached mode, a l-rad-pcr-second control loop is favored

because-

1) Th(.'design of tle control lool_isconsidered significantlymore conservativc

tha,_higher response systems:

2) The low-resporse loop minimizes the effectsof structuralP,exibility:

3) Low-respc,nse sensors are permissible, thereby decreasing the sensor noise.

It was found: howew,r, thateven small a_m..ouuLsof noise could interactwith the

C_.TGgimbal frictionto induce system limit cycles. Although such errors could

be maintained x_ithinrequirements by using high-frequency CMG's the performance

margin is,verysmal:. Itis expected thatfur_her stud3,intothisinteractionwill

develop techniques by which to minimize it;thus, the low-frequency loop with

high-frequency activeCMG's remains the most promising approach for the
detached mode.

In the soft-gimbal mode, there is an additional source of error due to crew

disturbances. This source exists in spite of the _ '-_'-'_ _' ""-"rc,.ar,,,,,,,_ ,_t,,_y of the soft

gimbal to attenuate the 1200-ft-lbf-crew disturbances to the 0.04 ft-lbf disturbance
level applied to the telescope. Even these small dishtrbances, however, cause

momenta_ y MO'r pointi:tg errors in excess of requirements unless high-frequency

CMG's are employed in high-frequency control loops. While these techniques

indicate that the pointing specifications can be achieved, they !cad to a less con-

servative design. The h_ilowing considerations illustrate this point.

1) The use of very-high-frequency CMG's increases the possibility of noise

i_fimrent in the CMG gimbal servos.

2) The high-frequency loop :replies high-frequency senso):s tb.at exhibit high
noise levels.

3) The high--frequency loop increases the amount of coupling with the telescope

structural flexibility.

Summarizing, the detached mode is favorable from the s_andpoint of minimizing

lhe attitude-control problem: however, both configurations are feasible. The

advantat_e of the detached mode lies in the absence of crew disturbances.

4.2.5.3 Recommendations -- Although the studies bare indicated that the attitude

control of the MOT is feasible, the magnitude of the task (0.01 arc-second i_

equivalent to viewing a human hair from a distance of 1 mile) requires further

study. Below are some areas where this need is most acutely felt.

Brcadbo.ord £tudies of Coatrol Hardware--These studies are required to verify

the analytical results, as well as to point out at an early date those problem areas

that are only uncot'ered b) hardware, simulatijn. ' nrogram orientated towards
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',he laboratory demonstration of the required pointing accuracy on an air bearing

simulator is both practical and imperative.

System Synthesis Studies --The studies to date have only begun to uncover the

problem areas and the techniques necessary to solve these problems. For"

example in the detached mode, methods minimizing the errors due to CMG

gimbal friction and sensor noise are required.

Thermally-Induced Structural and Electronic hmtability--Changes in the thermal

environment can produce both structural bending a_d electronic null shifts. The

importance of these effects is not well known, but is fairly amenable to determine

from an analytic study.

System Synthesis Studies --The studies to date have only begun to uncover the

problem areas and the techniques necessary to solve these problems. For
example, in the detached mode, methods to minimize the errors due to CMG

gimbal friction and sensor noise are required. The soft-gimbal analysis presented
here has barely scratched the surface of that required. Simulation of the full

ll-degrees-of-freedom problem, including the soft-gimbal suspension bearing

friction and control system nonlinearities and noise, is required for an adequate
assessment of the ACS performance to be expected in this mode.

Acquisition Problem m The ACS sensor problem on MOT is overcome by using

multiple sensors and a very-narrow-linear-range fine sensor. Such procedurea

lead to inefficient acquisition, particularly since the optical signal is differentiated
to achieve system damping.

Image Motion Compensation- When viewing planetary objects, the telescope must

obtain its reference from nearby stars and perform slewing to compensate for

the planetary motion. Techniques for acomplishing this function need study.

Roll Axis Contro._ _A fairly high level of roll axis stability is required for several

of the observational programs. By "a fairly high level" _s merest potentially as

stable as 0.2 second of arc. The problem arises from the fact that a star tracker

for roll attitude control should nominally be directed at _'ight angles to the tele-

scope axis. It is expected that the thermal/structural stability of the spacecraft

structure would be the major problem in achieving this stability.
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4.3 P,ADIAT!ON AND ?:!ICRoMETEOROID PROTECTION

Ill both the synchronous-orbit and 250-nautical-mile-orbit missions, the radia-

tion environment constitutes a significant hazard. Shielding is saecessful in

protecting ma,_. bat is only partially successful in the protection of film. An

impractical amount of shieldirg is needed to eliminate fogging completely. The

results point up the need for same other means of protecting the film, such as

maki_ N it less radiation sensitive or reducing the time of storage within a radia-
t ion environment.

The mierometcoroid environment is somewhat more severe in synchronous
orbit but has negligible effects on MOT operations, as discussed in Section
-I. 3.5.

4.3.1 Radiation Environment

The ionizing radiation that the MOT will encounter is classified as trapped or

untrapped according to whether or not the particles are significantly trapped by

the geomagnetic field. Trapped particles consist of protons and electrons.

Untrapped particles are galactic cosmic rays and solar-event particles.

Galactic cosmic rays are predominantly very-high-energy protons with a small

percentage of kigher Z particles. Due to their high energy, these particles are
impervious to any reasonable shielding.

Solar-event particles are most likely to be encountered during the years around

solar maximum when the Sun is most active. Solar events can be predicted a

month or more before the event by observation of activity on the Sun: but, these

predictions are uncertain due to a lack of understanding of the causes of events.

However, a few hours warning is provided by the solar flare that precedes

arrival at Earth of the main body of solar event particles. Solar events have

durations from 30 hours to 6 days, but approximately 3 days is typical. Most of
the radiation is enc atered6 to 30 hours after the flare.

The fluence, J, of the solar-event particles for an event may be expressed as
an exponential rigidity spectrum. That is:

-P/P
J (> P) = J e o (Do

where P( tE 2 1876E ) is the proton's rigidity ' ' "- + .... (momentum/charge) and E is the

proton's energy in mev. The average Po during tbe 6 years around the last solar
maxinmm (1956 to 1961) was 100 My.

The fluxes and spectra of both the trapped and untrapped radiation are strong func-
tions of position. Therefore, environments at both high and low orbits will be
trcated separately.
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4.3.1.1 Radiation Environment at Synchronous-Orbit Altitude- The environ-

me.l'tat synchronous-orbit altitudesis somewhat uncertain due to itslarge iluc-

_uatic,_with time. In this study, dose rates are not critical,but the integrated

dose is. Thus, conservative time averages are used v,here applicable.

Trapped Ra,'Jiation-The fluxof trapped electrons varies over a large range

dependent on localtime and geomagnetic disturbances;therefore, a time aver-

age over several months is used. The spectra of both the protons and electrons

are qmte steep (i.e., predominantly low-energy particles). The fluxof electrons

above 40 key is 5 x 107/cm2/sec while the fluxabove 500 key is only 4 x 104/cm2/

scc. Two gl/cm 2 of A1 (0. 292-inch) is sufficient to stop the electrons. Tile result-

ing Bremsstrahlung gives a dose rate of 2.6 x 10 -2 rods per day or about 10 fads

per year.

Similarly, the flux of protons above 10 key is approximately 3 x 108/cm2/sec and

is less than 50/cm:/sec above 4 mev. The protons are stopped by a few mg/cm 2

of material so that their dose contribution is negligible except for' surface e2fects.

In considering damage to optical surfaces and thermal coatings, energies of a few

kev must be considered. The low-energy protons are impoctant because they stop

very near the surface and deposit all of their energy there. Extra_olating the pro-
ton flu_ to zero energy yields a value of approximately 6 x 108/cm2/sec above zero

mev.

Untrapped Radiation_ The fluxof galacticcosmic rays is small enough that itdoes

not constitutea significanthazard to the men in the MOT mission. However, since

the film is sc much more sensitiveto radiationthan man, the galacticcosmic ray
dose must be considered in detail.

The galactic cosmic ray intensity has been found to vary by approximately a factor

of two with the solar cycle. At solar maximum, the dose is approximately 5 rads per

year and at solar minimum, approximately 12 rads per year. This difference is due

to an increase in the solar magnetic field near the Earth when th_ Sun is active. The

increased field prevents lower-energy particles from reaching the Earth. Thus, the

change in flux is due primarily to a change in spectra. At solar maximum the spec-

trum is harder, and shielding (<--_ 50 g/cm 2) increases the dose because of the secon-

daries produced. A shield of 50 g/cm 2 will increase the dose by approximately 15

percent. On the other hand, shielding will decrease the dose ':it solar minimum
,)

because the spectrum is softer. Duriw, this period, 50 g/cm _ will decrease the dose

by approximately 50 percent. Both the time variation and shielding effects have been
incorporated into this study.

The solar even_ particles constitute a significant hazard to both film and man. Since

long-range predictions of events are not possible, a probabilistic approach is commonly

used. In determining adequate shielding for men in the MORL, Douglas used the proba-

bilities of encountering one or more large events. However, the great sensitivity of
film to radiation necessitates the consideration of all .he met,ts. The resultant shield-.

ing curves are shown in Figure 4.3-1 for two probability levels. The curves depict
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the dose insidea uniform aluminum sphereatconstantprobabilityof receiving

that dose or greater in a 60-day period. (The 60-.day period is the maximum
time that unexposed film will be stored.) The study was based on the 6 years
(1956-1961) surrounding the last solar maximum.

During solar minimum, the smaller events are less likely to occur than during
sola:' maximum. However, there have not been enough large events to corre-
late them with the solar cycle. For this study, one-fourth the average yearly
flucnce for the 6 years around solar maximum was used as the expected yearly

fluence during solar minimum. Using a characteristic rigidity, Po' cf 100 My.,
the shielding curves in Figure 4.3-2 were generated. This figure also includes
the shielding curve for galactic cosmic rays at solar minimum.

Besides the radiation encc'mtered at synchronous-orbit altitudes, the dose
received in the transfer orbit must also be considered. The transfer studied

for the MOT avoided the intense tuner belt. The predicted doses for man and
film are 0.4 tad or less and 0.25 rad or less, respectively. The dose to man
is negligible. The dose to film is taken as 0.25 rad and incorporated in the
fogging estimates.

4.3.1.2 Radiation Environment at Low-Earth-Orbit Altitude m The geomagnetic
field prevents all but the highest-energ7 untrapped particles from reaching the
250-nautical-mile orbit at low latitudes. Most hlgh-energy particles are galactic
cosmic rays, which contribute a dose of approximately 0.003 tad/day independent
of shielding. The solar event particle contribution is negligible.

The trapped protons and electrons constitute the largest hazard at low altitudes.
These fluxes are encountered over the South Atlantic for 10 to 20 minutes durir_g
six or seven consecutive orbits per day.

The trapped electron flux is due primarily to the Starfish experiment in J_,',.y t9621
The penetrating electrons from this experiment are decaying, and the flux is esti-
mated to retuyn to :_atural background between 1970 and 1_72. The natural back-
ground is expected to be soft with very few electrons penetrating 2 g/cm 2 of alumi-
num. The Bremsstrahlung dose rate beh'.'_:.,d2 g/cm 2 is expected to be 3.7 x 10 -3
rads per day.

The tzapp¢_d proton flux is the primary hazard due to its intensi%y and spectral
ha_'dness. The proton flux is from the high-energy proton (HEP) map compiled
by Dr. James Vette from pre-1963 data. The proton shielding curve for the low-
Earth-orbii mission is shown in Figure 4.3-3.

The proton flux at low altitudes varies with the solar cycle. When the Sun is active,
the Earth's atmosphere expands due to heating and scatters the lower-energy
trapped particles. Thus, the flux is higher around solar minimum; the HEP map
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FIGIRE _.3-2 YEAP.LY DOSE - SYNCHROROUB ORBIT
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incorporates ¢'ata taken during solar minimum. Since the variation with the so',al
cycle is uncert ain and since only low-energy protons are affected, the HEP will
be used throughout. The HEP thus provides a conservative esthnate of the high-

encrgy t rapped-pr oton environment.

The low-energy--proton en',ironment in iow Earth orbit must be extrapolated to
zero energy for use in evaluating surface degradation. The result of this extrapola-
tion is a flux of approximately 5 x 10q protons/em2/day above zero energy.

4.3.2 Radiation Shielding for Man and Film

The emphasis of this section is on tile shieldiag of film because film is much
more sensitive to radiation than man. No radiation data are available on Types
103 and [I films. Plus-X Aerecou film has film speed and granularity similar to
Type 1.03, so the radiation response of Plus-X Aerec3n has been used to estimate
the radiation fogging that will be encountered. Radiation sensitivity is greater for
higher-speed films. Thus, since Type II is slower than Type 103, the fogging cal-
culated from Pius-X Aerecon should be conservative for Type II. The radiation
response of Plus-X Aerecon is sbown in Figure 4.3-4. In both orbits, the maxi-
mum time any piece of film is.stored is 60 days. Thus, in this study, the effect
o{ 60-day exposure to the radiation er>-i_',.,,.,,.,:.,-::,[h;-l_ been explored.

Since the film provides some self-shio!ding, the following assumptions are used.

The film weighs 80 pounds and is stored in a 1.3-cubic-feet cubic box, allowing
?0 _'_"e""_-...... t of the voiume re," partitions, etc. Thus, the film ;,_.the center of the
box has self-shielding of approximately 24 g/cm 2 (A1 equiv:¢,, : ¢) in all direetiun_,
and the fltm at the side of tn ,_ hey has self-shielding of spiJzc.-,_',:mtely 48 g/cm 2
(A1 equix alent) over 2 'g sty: __,,ns.

The radiation tolerances useu for man are:

Eyes 27 r'a,i,, 7:" ::,ear
Blood Forming Organs 54 r,,", ,.-: year
Skin 233 r ,, (,er year

These are the AEC radiation worker's lifetime tole._ auce compressed into a
5-year career.

4.3.2.1 Shielding for Synchronous Orbit--. The sync, hronous-orbit version of
MORL is designed with a biowell to adequately shield the crew during a 180-day
str, y time, based on Douglas data from Reference 9. The shielding for man in
MORL at synchronous,,orbit altitude, therefore, will not be considered in detail

in th,s study. The. dose received by man while in the MOT will not be sig-aifieantly
different from the dose he would receive in the MORL, as long as he is not in the
MOT Outing a solar event. The heavier shielding of MORL does not affect the
galactic cosmic-ray dose, and the trapped dose is minimal in both cases.
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FIGURE 4.3-4 RADIATION RESPONSE OF PLUS-X AF/_OON
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The film is st(,red iJl the biowell to take advantage of the biowell's shielding of

10.5 g"cm 2 (Al cqui_'alent). The density change duc to radiation fogging during

(i0-dav storage is piese,._ted in Figure 4.3-.5 as a iunction o[ additional shielding

provided by the box. The curves are dragon at constant probability of getting a

given density change or greater. The probability is directly relat_.d to the solar

events p;'obability mmlysis shown in Figure 4.3-1. Also i_:elude(! are the effects

of galactic cosmic--_ay dose and the dose received during transfer. The dose from

trapped protons, trapped electrons, and Bremsstrahlung are negligible at total

shielc, lng thicknessc-" of about 50 g 'cm 2.

A shield ,-,t 40 g"cm" Al. in addition to the biowell, is recommended for the

film. As can he sc_.en from Figure 4.3-5. additional shielding greater than this

amou,;t ,-cuult_ -._ little gain. Curve flatness at these thicknesses is due to the

galactic cosmic-ray contributio:_, against which it is practically impossible to
shield.

The maximum time that any piece of film spends in the MGT is 9 days. During

this time. the film _-cceives essentially no dose from the trapped belts. 1'he

bi_,gest contributor is Bremsstrahlung with a dose of 0.2 cad for thv 9 days.

The galactic cosmic rays will contribute approximately the same dose, whether
the film is in storage or in tbe camera. In the event of a solar flare, there is

enough warning to move the film to storage if des._red. Hc._cver, the option
remab:s to leave the film in the MOT. since the amount of fiLn lost would not

be great.

Figure 4.3-6 shows the fogging as a _nction of _hielding during solar minimum.

As can be seen from Figure 4.3--2. the dose ;s due primarily to galactic cosmic

rays. Thus. fogging is nearly independc,_t of shield thickness.

4_3.2.2 Shielding for Low E_m Orbit_'£he low-Earth-orbit MORL comFigu-

ration is estimated to be e_divalent to a tin'form sphere of 2 g/era2 A1 in thick-

ness. Figure 4.3-7 sb_,_vs the change in density due to fogging in 60-day storage

as a function of sb!,=lding added to the 2 g/cm 2 sphere. This foggivg is due pri-

marily to trael, ed protons since the contributions from trapped electrons, Brems-

strahltmg, cosmic rays, and solar events are negligiDte. Additional shielding to

k _'i,_ the fih_ s6orage shielding to 50 g/cm 2 is proposed. The spectrum of high-
,:ner_, trapped protons makes the cu_-we fairly flat at thes,, thicknesses so that

:_reater shielding has little effect.

The time the film spends in the MOT is also of importance because the MOT is

less heavily shieided than'the film storage area. The following table depicts
film shielding inherent in the MOT.
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2
'" _g__/cm_,V Solid Angle ('! g, cm_0_ 7o Solid aaglc {.,. 20 )

Detacl_eu Mode 46 54

Soft-Gmm,d Mode 24 76

The shieldingfiE._resfor the two modes differbecause the MORL provides

shieldinginthc gimbaI mode but not inthe detached mode. This is the only signi-
ficantdifferencebctween the two modes in either orbitfr,Jmthe radiationstand--

i)oint-

The shic!ding inh' ,-ent in tile MOT is inadequate for the protection of the film in

•_,,,,..._cameras. If *_"_,,,.+_,;,,n,,,,.,,,_shielded sectors are increased to 15 g/cm 2, the dose

rates are 0.06 rad pe:" day and 0.05 rad per day for the detached and soft-

gimbal modes, respectively. For comparison, if the shielding were only in-

creased to 10 g/era 2 , the film would receive a dose dta-ing 9 dws in the camera

comparable to the 60-day storage dose. Thus, the 15 g/cm 2 increase provides

the minimum acceptable shielding.

The shielding inherent in the MORL is not adequate to protect him in the 250-nauti-

cal-mile mission. The dose to man during the 180-day crew cycle is:

Eyes 85 facts

Blood Forming 25 rads
Skin 8_ .-ads

Thus, the eyes receive more than their tolerance of 2".' rads. If +he crew wears

6.5 g/cm (approximately 0.8-inch glass) goggles during r.as_e.s _hrough the trapped

belts, the eye dose will be reduced to tolerance level. Inherent in these dosage

figures is the assumption that the crew is in MORL during transit through the

trapped belts. If the crew were to spend time in the MOT during some of these

transits heavier goggles would be necessary (approximately 7.5 g/cm2).

4.3.2.3 Recommendations and Conclusions -- The sensitivity of film requires
that additional shielding for storage in the MORL be provided for bofll the syn-

chronous- and low-Earth-orbit missions in the amounts of approximately 40 g/

cm 2 and 48 g/cm 2, respectively. If this shielding is a heavy alttminum box, the

weight penalty in either case is approximately 1000 pounds. This figure could

be reduced somewhat by a detailed study of each configuration sad strategic

placement of the container to take advantage of inherent shielding. In both cases

the total storage shielding is approximately 50 g/cm 2.

Additional shielding for the MOT is needed on!y for the low-Earth-orbit mission.

This shielding is placed around the film in the cameras and should bring the

minimum shielding ¢o 15 g/cm 2.

Additional shielding is not provided for the MOT in synchronous orbit because

of the long-range unpre, dictability of the solar events environment. It is more
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practical to use the short-term warning provided by monitoring the Sun's activity.
If an event occurs, the film in MOT must either be moved to storage or abandoned.
I-lence. continual monitoring of solar activity must be a part of the operational
procedures. There is aiso a chance that an event will occur that is large er,ough
to require ,'eplaeement of the stored film. Data obtained from mor:itoring the Sun
is necessary to determine how soon replacement is practical.

It; comparing film damage under the present assumptions, it is noted that the film
in the synchronous orbit is more degraded simply because more radiation is
expected i.n the synchronous orbit. Two points deserve re-emphasis, however:

1) Fogging estimates are based on limited da_a:

2) Results are quoted for the worst cases because of uncertainties in film
properties and environment (primarily the solar event contribution).

The difference in fogging between synchronous and low Earth orbits are only
important in that the fogging at synchronous orbit is greater at low Earth orbit.
The foggings predicted for the two missions are so similar that the uncertainties
invoh, ed preclude any more-detailed comparison. Uncertainties in the predicted

fogging points up the great need for research in the area of fihn response to
radiation. The magnitude of the predicted fogging indicates that desensitization
of film to radiation must be explored. As an example of the last approach, people
who use nuclear emulsions have had some success storing their film in a humid
atmosphere. The only other approaches to the reduction of fogging are the use
of more shielding, less sensitive film, or shorter stor_,ge periods. These
approaches all involve penalties in weight or operational timeline.

The only additional shielding required for man in low Earth orbit are goggles to
be worn when the vehicle passes through the trapped belts, The synchronous-orbit
version of the MORL provides for humm_ protection against two solar flares
through the use of laboratory shielding and a biowell. Weight of this additional
shielding for an available crew stay time of 180 days is 14,200 pounds. However,
since the MORL study was based on a higher eye-dose tolerance than used in
this study, it is recommended that goggles of approximately 15 g/era 2 thickness
be provided. With these goggles, the probability that the 27-rad tolerance will
be exceeded is reduced to 3 percent; hence, the biowell constitutes the only
difference between the two missions in terms of the shielding required to protect
man.

Protection of man imposes some restrictions on operation' nelines of boL.

missions. At synchronous-orbit altitudes, man must be ' _ biowell during
an event; at 250 nautical miles, man must weal goggles during transit through
the belts,

Thus, the main differences between the two missions are: the film receives a

greater dose i,. synchronous orbit t_an in low Earth orbit; the synchronous-
orbit mission requires a biowell whereas the low Earth orbit does not.
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4.3.3 Degradation of Radiated Surfaces

4.3.3.1 Optical Surfaces -- MOT performance over a period of time can

degrade because of deterioration of the optical surfaces by particle radiation
discussed in Section 4.3.1.

MOT configuration considered for the purposes in this discussion is that shown

on Page 133 in Reference 1. Since the 120-inch primary mirror cannot be entirely

shielded from radiation, it is the mo._t critical optical surface in regard to degra-

dation by particle radiation.

Because of _he location of the secondary and folding mirrors, their exposure to

particle radiation is unlikely. The secondary mirror is shielded by the mount and

by its surface facing the primary mirror- away from the incoming radiation.

The ¢olding mirrors are shielded by their location within the cabin and could be

further protected by a light shield to baffle out stray light. This shield would be

a cone projecting forward from the hole in the primary mi: ror.

£he primary mirror considered for the MOT consists of the mirror structure

(zssumed beryllium) with a plating of Kanigen nickel, polished optically and

coated with a vacuurn-deposited reflective film of aluminum (References 37

through 40). The aluminum may have an overcoat of magnesium fluoride.

Figure 4.3-8 illustrates the stacking of these surfaces. The purpose of the

magnesium fluoride (MgF2) coating is th;eefold: abrasion resistance, oxida-
tion protection, and enhancement of reflectivity in the ultraviolet portion of

the spectrum.

The concern about particle radiation centers on the vapor-deposited aluminum

and magnesium fluoride coatings because most of the low-energy protov.s will

expend their energy in these coatings.

Aluminized Surfaces _ Because Kanigen nickel has a low reflectivity, a thin

layer of aluminum must be evaporated on the nickel. Much research has been

reported concerning reflectance coatings and their characteristics (References

41 and 42). Aluminum is considered to be the best candidate material (Reference

43). Figure 4.3-9 illustrates the reflectance of aluminum compared with several
other candidate metals.

The aluminum film is deposited at a pressure preferably no greater than 1 to 2 x
i0-5 mm Hg on a substrate at a temperature no nigher than 50°C. The film is

O

deposited rapidly (_15 seconds) to a thickness_of 600 to 900 A. The thickness
should be between600 to 700 A, especiallyon heated sub3trates because the specu-

lar reflectancedecreases noticeablyin the extreme ultraviole_with thick films

(Reference 44).
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_ = Optical Polished Surface/ Kanlgen Nickel

0.003-0.006Inch_s

t_ _ Mirror Structure

FIGURE 4.3-8 STACKING OF OI_fICAL COATINGS
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Mirror Overcoating- It is necessary to overcoat aluminum to prever, c oxidation
unless the aluminizing of the MOT mirrors is performed in space. Figure 4.3-10
illustrates the decrease in reflectance as a function of aging for several wave-
lengths in the ultraviolet for evaporaLed aluminum without an overcoat. Figure
4 3-11 illustrates the reflectance as a function of thickness of the oxide layer in

the extreme ultraviolet generated by aging.

Another advantage to overeoating with magnesium fuoride (MgF2) is that it
enhances the reflectance in the extreme ultraviolet waveleng'ths. Figaro 4.3-1:"

shows this elflmncement for two thicknesses of MgF 2 coatiug corr.pared with fresh
aluminum only. Aging of the AI+MgF 2 mirrors for 6 months showed no measur-
able decrease in reflectance, whereas the plain aluminum mirrors decreased
approximately 38 percent at k = 1216 ._ (Reference 45).

An alternate method of protecting mirrors for use in the extreme ultraviolet
has been to use lithium fluoride (IAF) coatings. These coatings have been used
where the main scientific interest was iD the study of the profile of the Lyman-B
line of hydrogen at _. = 1025.7 A. As can be seen in Figure 4.3-13, LiF has a
higher reflectance in this region at some sacrifice of reflectance at longer wave-
lengths. AI+LiF mirrors show very little aging ._'hen stored in a laboratory at
humidity of 40 pe'_eent or less. However, when _he humidity was increased to
50 percent, a decrease in refeetance occurred compared with no change for an
AI+MgF 2 mirror under the same conditions (Reference 46_.

Deterioration dueotO the solubility of LiF in water can be greatly reduced by

adding a thin (15 A) film of MgF 2 over the LiF. The addition of MgF 2 reduced
the reflectance by 4 percent, but the loss in reflectance was only l percent
after a 4-day exposure to 50-percent humidity compared to a loss of 12 _ercent

for an AI+LiF mirror without the MgF?.

Another alternate protective film is silicon monoxide that has been treated by
ultraviolet irradiation for 5 hours. Such a mirror has a reflectance of 92 per-

cent at _. -- 2200 ,_, compared to approximately 40 percent without the ultra-
violet treatmmit. No values are pu01ished for )t <2200 A ; therefore, the use in
the extreme ul._aviolet is questionable (Reference 47).

The _;receding discussed the recommended optical coatings --the reflective and

overcoat. If additioual evidence indicates the AI+MgF 2 mirrors deteriorate with
approximately 5 key proton irradiati,m, the alternative coatings may suffice with
some compromise of performance. Another approach would be to protect the
Kanigen and do the coating in space.

Radiation Effects ---Data concerning effects of proton irradiation of approxi-
m.¢tely 5 key on the particular types of optical surfaces disc.ssed above is not

available, However, a brief review of the effects of proton irradiation of higher

energies on several of the different types of optical surfaces, including AI+MgF 2
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mirrors is available and is presented here. toni,,, enough informatien is avaiiabic

to estimate the loss in spectral refh:etion aqd surface deformation as a function

¢f integrated protcn flux. The following summary of rqdiati._n-cffects dat_, illus--

trates tke need for further expe:-tmentatioq.

e anodic Coated Aidminum-- Boei,lg has conducted an experimental program "o

verify the stability of the Boeing-developed barrier-layer ,".nodized-aluminum

refleeti_lg surfaces in a simulated Ear:rt-Mars charged-particle radiation

er.vironment (Reference 48). One type of reflector was the low-emittanee

anodic :efleetor. The reflector _as chemically brightened and anodized per

the procedure outlined in Reference 48. The anodize.d layers ranged from

0.35 to 0.7 ,nieron iv. _hickn,_ss. Figure 4.3-14 shows the relative reflec-

tance of the kev-pro_n irradiated and control samples as measured by the

B,_ckman DK-2A refleetometer. Although the integrated flux is considerably

higher than expected for the MOT lifeth,m, it is obvious the surfaces are

ruined for rear-ultraviolet _avelengths. The cause for the shift of reflec-

tance minima and the chang, in reflectance is not obvious: it could be due
to an increase in the refractive index, on increase in film thickness, and

deposition of a thin film onto the anodic film.

• ChemicaUy Brightened Aluminum _Chemically brightened samples were

also irradiated in the e:_perimenta! program (Reference 48). The surfaces

chemically brightened to represent *_..-_,,,..--,m,_,_tnr_.... surface immediately prior

to arodizing. Figure 4.3--15 gives the results of the reflectance tests after

the samp}es were exposed to 8.2-key protons of fluxes of 4.6 x 1015 protons/
o 15 .cm- and 6.1 x 10 protons/cm 2 Examination of the surfaces by electron

photomicrograph revealed that low-energy protons caused blistering of the

surface. The size of the largest blisters (irradiated to an integrated flux
of 6.1 x 1015 protons/cm 2) were about 0.3 micron in diameter.

• Vapor-Deposited Aluminum _ Samples consisting of chemically brightened

aluminum substrates with a coating of vacuum-deposited aluminum to a

thickness of 1 micron were irradiated (Reference 48). After irradiation

with key protons, the aluminum surface was almost completely covered

with small blisters similar to the chemically brightened sample. The

blisters were predominantly approximately 0.2 micron in diameter with

some large blisters ranging in size from 0.6 to 3.0 microns. The height

of blisters that were approximately 3 microns in diameter was approxi-

mately 0.5 micron. Electron micrographs of a blistered surface cross-

section al-e consistent with the range of 7.4-kev protons, being 0.2 micron.

The blisters are believed to be formed by gas bubbles formed within the
deposited film. The deposited aluminum film is thicker than the normal

optical aluminum film by a factor of 10. The blisters were evidently formed
at a depth greater than twice the optimum film thickness; therefore, it is

possible thai a significant amount of the kev protons would pass through,

depositing their energy in the Kanigen nickel.
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• MgF,) - Protected Ai,.:n_inum Mirrors- Recent irradiation studies of AI.MgF 2

mirrors on gl't._a substrates have been published that indicate an insignificant

etaa_ge m reflectance. The samples were exposed to a tluence of 1 x 1012 protons/

on; 2 of 5--mev prot£ns. Although there was only a change of 0.2 pcrcen_ i:.a reflec-
tance at ). 1_16 A as seen iu Figure 4.3-16, the glass substrate is reported to

ha_,e become dark brown.

If a 5-mev proton flux of 50 protons/cm2-see is assumed for a 2 It su-fface in

space at a synchronous-orbit altitude, the flux per steradian is 8 protons/era z -

see-ster. The telescope housing will stop the low-energy particles so the area of

concern is the acceptance cone from the open end of the telescope to the mirror.

This solid angle is approximately 0.069 ste adian. Using a proton flux of 8

pr,-tons/cm--sec-ster, a flux of 0.55 protons/cm2-sec is obtained. The fluence

on the irradiated A1 -MgF 2 mirrors was ] x 1012 protons/era". This would corre-
spond to an irradiation time of:

Time :- 1 x l0! 2 Pr°t°hs/cm2- -- 1.82 x 1012 seconds
, 2 ,

0.55 proton/cm -sec

or 5. $ x 104 years

Reference 49 indicates this radiation, which has a very damaging effect on sili-

con s¢,lar ceils, is of no danger to Al _MgF 2 coatings used in astronomical
satellites exposed to the artificial radiation belt. It must be realized, however,

that these samples were irradiated with 5-mev protons, which pass through the

coatings and are stopped by the substrate. The radiation that may damage the

optical coatings have energies of a few key.

• Silicor_-Ox_de Protected Reflectors _An experiment, at study is currently in

progress at Boeing under Contract NAS1-5251, NASA/Langley Research Center,

to evaluate the effects of ultraviolet radiation and protons on the specular and

diffuse reflectance of various solar concentrator coatings and substrates. Typi-

cal samples of stretch-foIaned aluminum and electroformed-nickel solar

concentrators are being procured and tested. Coatings such as chromium,

SiO, A1, Si203, and SiO2 are to be tested in several combinations on both

the substrates, stretch-formed aluminum and electroformed-nickel. The

smnples will be irradiated with 2-, 4-, 8-, and 16-key protons. Details of

the experimental studies and progress are reported in References 50 and 51.

Data is not available to date of the proton radiation effects on the samples.

Performance Degradation_ Proton radiation apparently damages the reflective

surfaces in such a manner as to cause blistering. The blistering causes irregulari-

ties on the optical surface, which in turn produce deformations of the spherical wave-

front forming the image. Since light travels perpendicular to the wavefront, these

wavefront deformations wilt vary the normal direction of the image-formi.ng li_gh_.

The greater the magnitude of the wavefront deformations or the higher their spatial

frequency, the more scattered the direction of the light becomes; thus making the
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Percent R At Percent R At

1216 ABefore 1216 AARer Total Dose Exposure

Sample Numbe._ Irradiation Irradiation __(e/'em 2) (Tinae-Sec)

147 82.5 82.3 2 x 10 TM 1 000

. 10 TM2K 77 9 77.8 2 x 1,000

146 82.0 82.1 2 x 1015 10,000

4K 78.3 78.5 2 x 1015 10,000

• 1016153 81 5 81.6 1 x 1,000

10167/2//62 76.5 76.3 1 x i,000

• 1012 2148 80 9 80.7 i x protons/era

Figure 4.3-16: REFLECTANCE OF MGF2-PROTECTED ALUMINIJM

MIRRORS BEFORE AND AFTER IRRADIATION WITH
1-MEV ELECTRONS AND 5-MEV PROTONS
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the ,mint image larger, ltufnagel (Reference 52) has presented a mathematical

description of such _avefront disturbances and how to determine the modulation

transmission factor, M. The modulation transfer function of MOT can then be

multiplied by the modulation transmission factor RMp(M : RMp for radiation
effects) to produce the average modulation transfer function. --T> •

The performance of a system can be obtained by multiplying its modulation, MS,

by the factor B Mp to obtai, a new RMs that would be the modulation considering

the radiation ef/ects. If MS includes the modulation transfer function of the

optical system, film. and image motion, a new photographic image diameter
can be detcrmlned as a function of radiation effects.

To obtain an estimate of the time in orbit before the teiescope mirror suffers

significant damage, an extrapolation -,-_as made from the results given in Refer-

enee 48. Many tests were made on anodie-eoated aluminum at various particle

fluxes: the surface damage that resulted was simi!ar to that on the evaporated
aluminum surface. It was therefore assumed that the rate at which surface

dair.age occurred in the aluminized surface was similar to that of ::he anodic

coating Then. _,aing 1016 p/cm 2 as the reference point for locating this curve,

Figure _ 3-17 was ob_a.,,, u.

Since the criteria bei_tg osed for wavefroDt deviation to remain within the
theoretical resolution limit is 1/4 )t, ova surface variation of 1/8 3., it can be

seen from Figure _. 3-17 that the maximum tolerable fluence (integrated fux)
is 2.5 x 10 TMp/era 2.

Since the i20-inch primary mirror for the MOT cannot be entirely shielded from

radiation, it is the most critical optical surface, and was used in determining

the limit. It is assumed that the secondary and folding mirrors of the MOT are

sufP, eiently shielded from radiation. The telescope housing will stop the low-

energy partmles, so the area of concern is the acceptance cone from the open

end of the telescope to the mirror. This solid angle is 0. 069 steradian Using
a proton flux of 108 p/em2-sec-ster, we obtain 6.9 x 106 p/cm2-sec. With a

maximum allowable fluence of 2.5 x 10 TMp/cm 2, we get:

10142.5 x p/cm 2
- 3.6 x 10 7 sec = 4!7 days

6.9 x 10 "_p/cm2-sec

Takiag into consideration the assumptions made, the lack of data for the specific
ease. and the: use of maximum particle levels, it can be assumed that the mirror

will be useful lot a somewhat longer period than that given above.

Using thc 1/4 )t criteria, the modulation transmission factor (M) for the ,-r.,irror

can be estimated us_ag a random wavefront variation method (Reference 52).

With 1/4_ peak-to-valley wavefront variation, the rms wavefront variation will

be 1/20 ), . The rms surface dc_,iation will then he 1/40 )t, or 1/8 X peak-to-
valley deviation. U_ing Hufnagel's equation, the modulation tran,smission factor

for the mirror due to radiation damage (RMP) will be:
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D": tRMp xp )tz (Pros wavcfPont variation 2

4rr 0.90
RMp == xp 202

!

The modulation transfer function curves of Reference l, Pages 32 and 35,

can be multiplied by I_Mp and a new photographic image diameter deter-
mined. This new phd_ograpn disk diameter in magnitudes is

dl

Am_ = 2.5 log d2

where d 1 = diameter of original photographic disk

d 2 = diameter of photographic disk after radiation effects are
included

Use of the )_4criteriain Hufnagel'sequation results in performance equiv-
alentto one-halfthe Rayleigh limit. Ifthe mirror were permitted to degrade

to the faiiRayleigh limitof RMp = 0.8 or an rms surface deviationof_/30,

the lifewould be extended to approximately 2 years.

Figures 4.3-18 told4.3-19 show the estimated radiationeffecton the modu-
lationtransfercurves for el/15 and ef/30. Five%year radiationeffectsin

synchronous o?bit resultin a limitingstellarmagnitude of 22.6 for ef/15 and

22.3 for el/30 compared to 22.8 and 22.5, respectively,for the 250-nautical-

mile orbit. Since the flux at 250-nautical-mile orbit is approximately 1/1000

thatof synchronous orbit,the effectsare insignificant.

Itis quiteobvious thatconsiderable experimental effortis required inthis

area to understand and detcrlnine_more accurately the degradation th&_ can

be expected. Figure 4.3-20 is a block diagram of the type of experimental

program recommended. Mirror samples should be evaluated by interfero-

metric techniques to determine the surface deformation. Tests should be

performed on samples beiore and after irradiation,and on control samples,

to determine performance in terms of modulation transfer hmction, resolu-

tionlimit,and the limitingstellarmagnitude using spectrographic films.

4.3.3.2 Exterior Thermal Coatings

Radiation testsand reflectancemeasurements on thermal coatings considered
for the exterior surfaces of the MOT have indicatedthat a radiationlevelof

1015 proton/cm 2 will not damage the thermal control surface or r_sult in

a major change in the emittanee of the coating.

Ultravioletradiationover extended periads can change the solar absorptance

of a coating. The external thermal coatings being considered are the most

stableu!travioletcoatings availableat thistime.
2
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4.3.4 Performance D,%radation of Film

The radiation environment to which a pho!:ogr,_-_hic emulsion is subjected greatly

influences _he photographic results. Expo£are to L_mbardment by high-energy

radiation can cause undesirable changes i _ the sensitometric and image quality

characteristics of an emulsion. These changes depend on the nature cf the emul-

sion and the duration of exposure to the radiation. Coarse-grained, high-speed

materials are more sensitive to radiation than are the finer-grained, slower-

speed materials, As the magnitude and duration of the radiation increases, the

effect on the h'lm is greater. The effects, however, are not a diree +.product of

ma_,_itude and time as in the image-forming exposure. _:_e following is a dis-

cession of film degradation due to radiation exposure for both a synchronous

orbit and one a_ 250-naut.%_.l-mile altitude. Film degradation is discussed in

terms of limiting magnitude th,_t may be photographed.

Some assumptions are made because of the lack of radiation data available on

Type 103 spectroscopic film. Some data is available on Plus-X Aerecon (E. K.

8401) whi,.h closeiy matches Type 103 in speed and gra.nularity. The response

of Plus-X Aerecon film to radiation is used to estimate the amount of degradation.

The photographic erculsion is sensitive to high-energy radiation, both corpuscular

and electromagnetic. The radiation environment at synchronous-orbit altitude

poses the greatest hazard. The photographic emulsion at this altitude wil] be sub-

jceted to galactic cosmic rays (very-high-energy protons) and solar event parti-

cles (following a solar flare). At the lower altitude, the latter is negligible.

Emulsion exposure to this radiation appears to produce the same basic effects:

an increase in fog level, a decrease in gamma, and a change in film speed. The

magnitude of the effect is dependent on the energy level and duration of the expos-

ing radiation (Refe;'ence 53).

Film sensitivity to radiation necessitates that additional shielding be provided for

both a synchronous- and ._ low-Earth-orbit mission. Tbe shielding proposed is

about 40 g/era 2 of aluminum for the high-altitude and ,18 g/cm 2 for the 250-

nautical-mite orbit. This shielding is only [._rtially su,z_essful in protecting the

film, so some fogging will still result (see Section 4,3. _;. Figure 4.3-21 shows

how the sensitometric chalaeteristies are affected at both the high _ud low alti-

tudes with the amount of shielding indicated above. From these curves, the

increase in fog level is apparent.

Limiting photographic magnitude is determined by the following formula (Refer-
ences 54 and 55)"

pgm L = m L - 2.5 log 8{ef/u)2T - Apg TM
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'-.,i_-re pgm L limiting magnitude desired to pl:otograph

m L limiting detectable stellar magaaitude

cf/n = equivalent focal ratio

T - exposure time in minutes

Apgm s :: change in maga_.itude clue to a change in sensitivity

This fo_'mula is based on the norraal sensitivity of E. K. Type 103 fihn.

The limiting stellar magnitude of the telescope, mL, is dependent on tke average

sky brightness and diameter of the photographic disk (Reference an). Sky bright-

ness wilt not change appreciably from the low Earth orbit to synchronous-orbit

altitude. The photographic disk diameter is determined as a result of the modu-

lation transfer function (MTF) computations. The intersection of the ftlm detectivity

curve and the MTF eum, e determines the resolution and, therefore, the size of

the disk. The film deteetivity or threshold curve is proporational to the gamma

and granularity of the film. From Fibre 4.3-21 it can be seen that gamma (the

slope of the linear portion of the curve) varies slightly. If it is assumed that

gumma remains constant, granularity does not change, ae_ resolution is unaffected,

the size of the photographic disk is unchanged. With these assmnptions, the limit-
ing stellar magnitude remains constant.

As radiation dosage is increased, the speed or sensitivity of the film is decreased.

The lerm for the chaege in magnitude due to a change in sensitivity is not zero

for Type 103 film subjected to radiation due to this sensitivity change. The
formula for this term is:

SA 1

_pgms = 2.5 tog SA2
1

SA - E where E is exposure in meter-candle-seconds

SA1 =- sensitivity of Type 103 film

SA2 = sensitivity due to radiation exposure

The speed point for films used for astronomical work is taken at a density of 0.6

above g_:oss fog (Reference 56). Gross fog for the Type-103-controlled character-
istic curve is about 0.1. Exposure of the emulsion to radiation increases the

g,-oss fog level as shown in Figure 4.3-21. If the density above fog is maintained

a_ 0.6, the exposure changes, which in turn causes a change in speed. The fol-

lowing table shows how speed changes for the four cases given in Figure 4.3-21.

¢J-,
_t., |
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l,og Exl}osure Speed

Control led 2. 495 32

250 Nautical Miles 2.541 28

Synchronous (Solar Maximum) 7?.583 26
i

Synchronous (Solar ?,linimum} 2. 590 25

Making the suitable corrections for changes in film sensitivity due to rad'.ation

exposure, the limiting photographic magnitude, pgm L, is computed for "lype 103
spectroscopic film at two effective focal ratios. The values are fo:._ an exposure

of 40 minutes. The following table summarizes these computations.

el/15 ef/30

Controlled 22.8 22.5

250 Nautical Miles 22.6 22.3

Synchronous Altitude 22.5 22.2

(Solar Maximum)

Synchronous Altitude 22.5 22.2

(Solar Minimum)

Conclusions and Recommendations _ The results of this investigation show that

limiting photographic magnitude is affected by exposure of the film to radiati,m.

The film is degraded to a higher extent at synchronous altitude; at this altitude

the limiting magnitude that may be photographed is reduced by 0.3. The compu-

tations were based on the assumptions that: (1) the fogging e._timates were

obtained from limited fihn data; and (2) the size of the photographic disk was

assumed to be affected by radiation exposure.

The rcduction in resolution due to the increase in fog level has not been deter-

mincd in this investigation due to lack of data. In addition to affecting the sensi-

tomctric characteristics of the emulsion, however, it does appear that the radia-

tion ,_Iso has an effect on image quality. Gamma and granularity were assumed

in this study to be unaffected. Further investigation must be conducted to determine

the extent that gamma and granularity changes with radiation dosage. If gamma
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decreases, causing areduction in contrast, this results in a loss of detail as

the fi!m loses its ability to record subtle brightness differences. This loss in

contrast in turn lowers the resolution capability of the film. In addition, the

increased fog level increases the overall density of the recorded dala, effec-.

tively shifting the exposure up oil the characteristic curve. This could rest]!:

in ,'m overexposed scene, with a resultant loss in resolution and aculiy.

Another significant effect results if there is an increase in graininess produced

by r;]d,.'::_;_,,,. Tl;u i_;erease in graininess decreases the signal-to-noise ratio

of the image and pi'oduces a !oss iB detail. The increased graininess effect is

more severe in the low--eont:cast ar_as of the scene, tn these areas, a decrease

in signal-to-noise ratio can result in aetail being below the visible threshold.

therefore, effectively lost (Reference 53).

The shorta_ce of data showing the effects of radiation exposure to spectroscopic

films and plates indicates the need for further investigation in this field. The

relationship between fog and resolution loss must be investigated to determine

the fog level that can be tolerated without serious degradation of performance°

4.3.5 Micrometeoroid Protection

4.3.5.1 Meteoroid Environment -- The environment and design criteria gov-

erning the meteoroid shielding for the low Earth orbit are discussed in Reference

1. These same criteria will apply to the synchronous-orbit MOT (except for the

Earth shadow factor, which would increase from 0.75 tc i. 00).

The effect of the change in the Earth shadow factor on the primary mirror

da_mage is sho_z} in Figure 4.3-22.

The probability of no penetration of the walls of the baseline configuration in

synchronous orbit during a period of 3 years is:

For wall gage = O.01 inch, P(O) = 0.929

For wall gage = 0.02 inch, P(O) = 0.988

The probability of penetration of the telescope walls within 3 years, as a function

of wail thickness is shown in Figure 4.3-23 for tbe synchronous-orbit and the
250-nautical-mile orbit eases.
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-t..i DATA MANAGEMENT, COMMUNICATIONS, NAVIGATION AND GUIDANCE,
AND ELECTRICAL POWER

•1..t. i Data Management

Data management includes the acquisition and handling of MOT data in the MOT,

in the MORL, and on the ground.

4.4.1.1 bIOT Data Management -- As presented in Section 5.6. ! of Reference

1. the MOT is only slightly dependent on the configuration of the integrated

MORL-MOT system (i. e.. basically the same whether the soft gimbal or the

detached mode is used) because the MOT is required to communicate only with
the MORL and from distances not in excess of i mile. Since neither the MOT

mission nor ihe MOT-MORL relationship is dependent ,,r altitude and since there

is no direct contact between MOT and Earth, the MOT data management subsystem
is indapendent of altitude.

4.4.1.2 MORL Data Management -- MO_ !, handling of MOT data is not a prob-

lem in either the soft-gimbal or the det_ ." d mode at either the low Earth or the

the synchronous-orbit altitude. If there an ac'.-antage, however, it occurs with

the synchronous-orbit altitude. The 24-hour-per-d_y .nntact with the ground sta-
tion removes need for efficient communtcation, wnic..._, based on available time

between MORL and the ground receiving station. The MORL can then bc designed

to handlc MOT data without being constrained by need for an efficient MCRL-Earth
communication link.

4.4.1.3 C_round Data Management--All provisions needed to pel ;orm ground-

system data handling functions for MOT are also required to support the proposed

MORL configuration, described by Douglas (References 2 through 28). The pro-

visions for ground handling of MOT data are independent of the coupling mode

between MORL and MOT (soft-gimbal or detached) and, with one possible exception,

are independent of altitude. The possible exception is ;hat in the synchronous
mode there is no constraint on contact time between MORL and Earth.

MOT data is derived f_om imagery, telemetry and voice sour_'es. Imagery is

physically returned to Earth on film and also is obtained via MORL relay from a

slow-scan vidieon in the MOT. The technique for reconstruction of images on

the ground is essentially the same for data derived from the MORL film projection-

scanner system and for data derived fromthe MOT vidicon. Tile only difference
is that the MOT data is one frame each 6 seconds and has 1150 resolution lines

per frame, whereas that from the MORL is one frame each 4 seconds with 2000
resolution lines per frame.

All MOT telemetry is pulse-code modulated (PCM) in a format that conforms to

IRIG standards (Reference 57,. General purpc telemetry ground stations that

can accommodate IRIG PCM formats can, therefore, be used without modification.
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MOT voice communication is the same as the proposed MORI, voice communica-

tion with the additiorxl requirement that any MOT-to-Earth or Earth-to-MOT

voice must be relaye_ through the MORL.

4.4.2 Communications

MOT-MORL communication, as proposed in Reference 1, is independent of

altitude and, because MOT does not communicate directly with Earth, substitu--

tion of a synchronous altitude for a low-Earth altitude does not affect the design

of the MOT communications subsystem.

4.4.2.1 Rf Communications Link--MORL-Earth communication is affected

in that the quantity of data that can be transferred increases over 18 times.

That is. the data rate of all MORL channels ts (by Section t, Reference 9) the

same in both synchronous and low Earth orbits. For the synchronous orbit,

a high-gain directional antenna is substituded for the omnidirectional MORL

antenna used for near-Earth telemetry. The available contact time between

MORI. and Earth then increases from 77 minutes per day to 24 hours per day,

and the quantity of data that can be transferred increases by the same proportion

(to 6.6 x 109 bits per day over Channel F).

The sum of the max am MOT communication (0.1 x 109 bits per day) and the

maximum MORL communication (0.3 x 109 bits per day) is very small compared

to the available capacity. Therefore, a synchronous orbit eliminates the require-

ment that efficient communication be used to transfer all presently planned data
in t_"._available contact _me.

The increase in available capacity of the MORL communications links afforded

by the synchronous orbit would permit closer surveillance of MOT experiments

by ground personnel. At the expense of crew time, exp,osed and developed film

can be scanned by the MORL fihn projector/scanner system and transmitted to

Earth over the TV link. A 2- x 2-inch film (similar to that proposed for large

scale photography) could be transmitted in 4 seconds with a line resolution of.

approximately 1400 elements and a grey-scale (density) resolution of five to eight

levels. Film sizes to 9 x 9 inches (possibly_ with additional modification of tae

MORL film scanner, to 16 x 16 inches) could be transmitted with the same resolu-

tions. While these resolutions do not exploit the capability of the proposed film

{Kodak spectr_¢raphic film Type 103 or equivalent) to 42 photographic tines per

millimeter v,i up to 10 density levels, there would be sufficient information

content to substantially ease the task of ground supervision of the experiment

program.

4.4.2.2 Laser Communication-Link Considerations _ Recent advances in laser

techniques and equipment have made space-to-ground laser communication iinks

zea_uLr.. ._,_,,v_,_, ........ _,.,,,_ ,_,_,, e_uv,ue greater bandw _th than can rf sys-
tems, they are not currently recommended because:

1) Laser systems do not provide all-weather communication capability;
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2) Incorporation of laser systems would require a modification of the MOI{L;
this modification is not warranted since the rf link can aceom_.lodate data

requiremeqts presently proposed for both low-Earth- and synchronous-orbit
missions:

,3) Tracking requirements imposed on the ground equipment are severe, par-

ticularly for nonsynchronous orbits.

4.4.2.3 Photoscan Techniques-- Both conventional and laser type scanners
were studied.

Conventional Scanning Techniques- To demonstrate the capability of the 1 -me

data link associated with the MORL photosean unit, tim number of images that
could b_, .+r_,_smiEed re1- day __s a function of film size was tabulated. For this

exercise, it is assumed that the MORL is in synchronous orbit and that the scanner

can convert the filmed image to an electric analog with negligible distortion. If

there is a nominal allowance of 50 percent for Keli factor and film handling (12

of 24 hours), then the maximum number of pictures of any one size at 42 line-pairs
per millimeter that can be transmit+,_d over the l-Me data link is:

Film Size (inches) 16 x 16 1.4 x 21 2 x 2 0.6 x 0.6

Number of images 80 690 5100 56,000
per 24 hours

Any requirement to physicallybring film back to Earth is not the resultof in-

adequate capacity in the rf link--a 1-year accumulation of photographs could be

transmitted ina few days. The requirement that film be physicallyreturned to

Earth _s based on the assumption thatdistortionsof the film record are unacceptable.

This a_sumption is supported by the practice of using correlationtechniques to

enhance the signal-to-noiseratioof the photographs that contain images partially

or completely masked by noise. The assumption is also supported by the need

ior dimensional stabilityso that measurements between astronom:,calbodies can
be made.

A typicalimagery transmission link is described to aid in identificationof distortion

sources. The linkconverts filmed images to an electricanalog, transmKs the

electricanalogs to Earth, and converts the received electricanalogs back into

filmed images.

ilm _-[ Signal _--[Modulator_[Transmitter[
Sca nne '11c°nditio "1 -- -

/
Transmission
/

Through
,, / ISyncnrontza[mnl i }urn- I
_pace

-/ I Tape II Generator_nd|lExposurel

]Reeeiv--er_-IDemodulator]-_ecorder H Amplifier _1 Device ]
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The film scanner contains a light source: intensity of the light output is modulated

by the density of the element of filn, being scanned. The modulat_ d light buam is

directed by a lens system to a photomultiplier tube or other device that produces

an electric output proportional to the intensity of the incident light. The signal

conditioner digitizes, pre-emphasizes, or otherwise modifies the output of the

scanner, thus providing an electrical analog that describes tile density of the film

element. The modulator converts this analog into another that is suitable for

transmission. Tbis analog is typically an rf signal modulated in amplitude, fre-

quency, or phase. The transmitter amplifies the rf analog for transmission to

the ground station where ':he receiver rejects signals and noise that are outside

the banflwidth of the channel and amplifies the desired acceptable signals. The

demodulator, the functional inverse of the modulator, converts the rf analog into

the signal-conditioner analog form. If nonreal-time image reconstruction is

employed, the demodulated analog is temporarily stored by a magnetic-tape

recorder. The sync generator and amplifiers accept the output of the tape recorde_'

or the demodulator (as selected by the ground operator) and decodes, de-emphasizes,

amplifies, etc. as necessary to drive the film-exposure unit. The film-exposure

unit --- the functional inverse of the film scanner -- causes a light beam to be

" intensity-modulated proportional to the received electric analog. The light exposes

the film so that, ideally, the density of the element of film after development is

the same as the density of the corresponding element of film in the film scanner.

In the film scanner, the light beam, film, or both, are moved so that each element

of the film is scanned, and the positioas of the light beam or film are encoded with

the film readout. On the ground, the light beam and the film in the film exposure

unit are moved in synchronism (except delayed in time) with the light beam and

the film in the film scanner by means of the position data. The ider, i result is

generation of filmed images on the ground that exactly duplicate the filmed images
at the data source.

In practice, the reprodt,.ced images are not exactly like the filmed images at the

data source. Sources of image distortion are discussed in the following paragraphs.

Differences in Minimum Resolution Element- Distortion occurs when the minimum

resolution eiement in Lh_: ,_produced image is greater than the minimum resolution .

element of the original film. Resolution is degraded whenever the maximum dimen-

sion of the !!gh_ beam approaches the size of the minimum resolution element on

the original film and whenever the information bandwidth of the link restricts the

Lransmission of the electric analogs.

If the light source is a cathode ray tube (CP, T) beam, the minimum spot size is

limited by the target phospt_cr decay time, by the thickness of the phosphor, by

the smoothness of the phosphor, and by the ratio of acceleration voltages to the
j1 . . lavelocity dispersion of electrons emitted from m_ cathode mater.,,i Yhe ,euu_L

is about 1-aaO,,;,.. to 2000 resolvable elements per sweep with grey resolution of ._ to
8 levels. A similar result is realized if a vidicon is substituted for the CET and

the associated photomultiplier.
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If tl-e ,ight source is fixccl and the light beam is focused by lenses, spot size is

determined by hot_ much the source of light approximates a point source, how

closely the fihn can be held to the point of focus, and how small are the abbera-

lions in tile lenses. Again, 1060 to 2000 resolvable elements per sweep can be

obtained.

The minimum bandwidth of the link cannot be less than the reciprocal of the

s,aeep rate of the light beam expressed in the n_umber e_ resolution elements

swept per second: otherwise, r.-,iz.e will partiaiiy or completely mask the smaller

resolution elements requ,red tot satisfactory transmission of data. It must be
noted that more noibe is admitted as the bandwidth is increased. ',,"hat is, excess

bandwidth penalizes the system by permitting the noise threshold to rise.

Mechanical and Signal Irregularities--Dimensional distortion is introduced by

irregularities in mechanical devices that move the spot and the film (both in the

scanning and reproduetion equipment), and by irregularities in signn's to control

spot and film position.

Response and Dynamie Range _ Grey-level resolution is limited by the dynamic

range of the photoscan tube and amplifier - t_',e response of the light source

and photo tube combination as a function of _patial frequency, and by the

response of the video amplifiers in the link.

Although the distortion of each element of the imagery-transmission link is small,

the cumulative errors are significaet. Today's technology permits photo-scan

reproductions of film with a resolution about 1000 to 2000 TV elements per scan

line, and a dimensional stability of a few resolucion elements. This low-resolution

data is useful as a crude check on the MOT experiments, but will not permit optimum

use of MOT equipment. In fact, much ot the expected optical gain of four magnitude
will be lost in the photoscan process unless the scanned format is restricted to

a small area. 7e'or instance, a star image on the film with signal-to-noise ratio

of 10 is discernable with the eye. After scanning, the reproduced image is

completely lost in the noise if the effective scannipg aperture exceeds ten times

the d;.ameter of the original star image.

, , _ i,aser Photo-Readout _A new generation of photoscanners, in which a laser is

used as the light source, is being developed by Perkin-Elmer Corp., Stanford

Research Institute, Boeing, and others. The laser photoscanner uses an

electrically or mechanically scanned laser beam to read out or record data on

photographic film. Advantage_ of the laser system over conventional TV scanners
are:

1) The laser is more than 1000 times brighter than any conventional source.

2) The lateral cehere,:_,ce of the ' ......,,,_,_ beam permits focusing to a very small

spot whose diameter is limited by diffraction effects alone. The diameter

uf the central maximu:n (between nulis) is 2.44F ),, where F is the focal

length divided by tim effeetive aperture of the focusing optics, and )t is the
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laser wavelength. The effective scanning ,nperture (spot size) can easily be
much smaller than the star image diameter on the MOT film.

3) The number of resolved elements per line can exceed that of the Type 103

film by a factor of 5 or more. As an example, A. Kozma dleference 53)

reported on a laser recorder that recorded 30,000 resolvable spots per iinc
on 9-inch film.

4) The extreme coherence length of the Laser permits interference effects over

large distances. Part of the laser beam can be tapped off and used in an

interferometric rnechanical alignment control subsystem

5) Tbe laser beam itself can be used as the electromagnetic carrier, rather

than a radio-frequency carrier. This technique removes several possible
noise sources from the data link.

As with TV scanners, readout and recording can be accomplished with closely

related devices. Figure 4.4-1 illustrates the subsystem components. The

critical elements are the beam steering and format drive units.

The c_ectro-optic effect can be used for limited electrical steering of the laser

beam, but the number of resolvable spots per scan (-_ 100) is at present much too

low for application to the MOT problem. Mechanical techniques tt_at appear more

useful within the MOT timescale are variations of those used in high-speed streak

cameras; rotating mirrors, discs, and drums are used to impart relative mo_ion
between the focused laser beam and the film.

Since the full diameter of an Airy disc at f/15 is approximately 0. 001 inch, the

beam position must be known to within a few ten-thousandths of an inch to main-

tain geometric relationships. This distance measurement accuracy is we!l with-

in the capability of interferometric systems. The Airborne Instrument Divisi.m

of Cutler-Hammer manufactures a digital laser interferometer that measures

linear distances to an accuracy of ten-millionths of an inch.

The angular position of the rotating element may be determined with a state-of-

the-art shaft encoder. For example, if the 16-inch-square film is placed in a

6-inch-diameter drum for readout, a 16-bit shaft encoder will, in the absence

of vibrations, determine the spot pc sition on the circumference to an accuracy
_.vof 3 ten-mousandths of an inch

Reproduction of the original grey scale is basically a function of the film used for

recording. The t:-ansmission of each resolved spot can be de_ermined to an

accuracy of about 1 percent by measuring the attenuation of the laser beam. This

is more than adeq, uate. At the recorder, however, the density that results from

a particular spot intensity will fluctuate because of the statistical distribution of

the silver halide crystals and their lnw_ ,_,,o"_,,'-'.,__,.._,,_,efficieucy. The smaller the spot,

th,_...,g_._,_ta,-._-_. th,_._._.,,_,,.-,,1o,_,,,_,,,,._,,,_,,,,,._,,,,,,..,,_-,For this reason, the _.fil..r! used for recording

must have smaller grains than the MOT film.
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A representative laser photo-scan system is described belox:.

The .MOT film-negative is placed inside of an optically polished fused quartz

drum driven by a servo motor. The Eiim is fastened to the drum so that it

can. under the.- action of the centrifugal force, expand o;cr the inner s,,rface

of the cylinder. Ali optical system focuses a laser beam ontJ the film pla,m.

The light spot is moved parallel to the axis t,f the d_'um x_ith constant velocity.
The spot-drive mechanism is also part of a tx_o-beam digital interferorr,,eter

The angular position of the drum is readout with a 16-bit digital shaft c,ncoder.

The digital rate generated by the interferometer i_ approximately i0n times

the analog bandwidth of the film readout. The digital rate from the shaft

encoder is three times the analog bandwidth. These digital signals and the

analog film readout signal are encoded and transmitted to the grou_ld station

Although these digital rates are high, the bandwidth requirements are low

since the bandwidth is set by the magnitude of fluctuations from the mean
drive and scan rates.

At the Earth receiving station a similar laser scanning subsystem is used

for recording. The recorder on Earth is synchronic'eel with the readout sub-

_ystem through interferometer and encoder outputs. Residual error in the

instantaneous position of the recorder 3pot is corrected by an open-loop

beam-deflection mechanism. The received video signal is demodulated,

equalized, amplified, and used to drive an electro-optic light modulator.

The modulated laser beam is focused on the unexposed film held by the
recorder drum.

The minimta_n transmission time for a 16- by 16-inch negative is approximately

10 minutes. There is a trade between transmission time and reproduction

accuracy, so slower picture transmission may be desirable.

4.4.2.4 Conc*usions and Rvco_-i, mendations ---It is considered technically feasible

to build a i_scx- photo-scan system that is flflly responsive to MOT pictorial-

t_-ansmission needs. Economic feasibility cannot be established without further

study. If development of laser photo-scan systems is accelerated, it well may

be possible to translate photographs into electricai analogs such that dugradat!on

of picture quality is not discernab!e for scientific usage within the time scale

o,- the MOT-MORL system.

It is ,'ccommended that images be transmLqed to the ground over a photo scan

data link. The use of _ laser-scan system, ff available, will permit optimum

use of MOT equipment. If conventional *.echniques are used, the reconstructed

pictures still can be obtained in sufficient quantity to monitor progres_ of the

experiment program, even though full realization of the experimental objectives

must be delayed until the original film is transported to Earth (perhaps every

90 days).
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.t.4.3 Navi!*,:qi.)n and Guidance

Ill general. ;m-, igation and guidanc(, problems for the synchronous-orbit MOT
a,e uniiku those' for tile MOT in low Ea_th orbit. Ther.. _ are. despite the differences.

:,eve:'al similarities iq tile navigation and guidance systems for both types of orbits.

Navigation _Gx'ound-based radar tracking will be used to generate the navigational
measurements for the MOT-MORL system in both low Earte. a_zd synchronous orbits.

altilough hardx_ are for and operation of the t_ o navigation systems are compi,:te!y

dif[erent. The synchronous-orbit navigation profile and system description are

discussed h: Sections 4.4.3.1 and 4.4.3.2. In the low-Earth-orbit mavigation s_s-

tern (Reference 7) operation, the vehicle is tracked for the first three passes of a

clay (total of about 0.5 hour) over t_-,e manned spaecflight network (MSFN) station

at Corpus Christi, Texas. An ephemeris is computed on the ground and transmitted

to the vehie!e. Therea,_er, navigation info:mation is obtained by on-board extrap-

olation x_ith periodic update from more accurate ground-based extrapolation until

the next day's tracking. The position error envelope is always less than 5 nautical
miles.

In discussing navigational problems, sta .onkeeping should be considered since the

MOT-MORL detached-mode concept requires stations to I:,e not more than 1 mile

apart. Stationkeeping navip'ation for the synchronous ori_il: is discussed in Section

-1.4.3.2. and for the low Earth orbit in detached mode of operation in Reference 1.

Briefly, the MORL rendezvous radar is used to measure range and range rate to the

MOT. and the MORL computer is used to compute the relative drifts and necessary

velocity impulses. The radar must operate continuously bee.au_se statiovJ¢ccpirkg hn-

pulses are required every 9 hours for worst-ease ballistic coefficients.

Guidance- The MOT mission profile for both low Earth and synchronous orbits

dictates that the MOT rendezvous with MORL, which is already in orbit. Even
in the detached mode, the MOT must first rendezvotls with and dock to the MORL

for initial setup and alignment. The MOT vehicle performs the rendezvous and

docking maneuvers because it is lighter and because perturbation of the MORL is
to be ax oided.

The rendezvous-guidance profile is intimately associated with the trajectory.

For this reason, rendezvous guidance problems differ for the synchronous and

low Earth orbits (see Sections 4.4.3.1 and 4.4.3.3 _nd References 1 and 7). In

the lo_ Earth orbit, the chaser vehicle (MOT) is injected into an elliptical phasing

orbit. A series of apogee-velocity increments, based on tracking and ground-based

computation, allow rendezvous. When the vehicles are relatively close (less than

10o nautical miles apart) the rendezvous radar i_, activated, and terminal rendezvous

and braking are controlled b_, vehicle-based measurements .and computations.

Docking is achieved visually with radar assistance.
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4.4.3. i Syt:eb,'onous Orbit Navigation and Guidance Profile- Section :I..1 of

this document presents the trajectory and ; :'opu]s!nn requirem_,nts for launchip4r ,

the MOT into a synchrono,,s orbit. The navigation and guidance requiremunts

for ascent, rendezvous, and telescepe operation arc described in this section.

Guidance during the boost to the 100-nautical-mile parking orbit is handled by the

Saturn V inertial system. The vehicle is tracked th:oughout its 77 minutes _n the

parking orbit, and the velocity man_uver necessary for transfer to the synchronous

orbit is calculated by ground facilities. During vehicle ascent in the transfer orbit,

traeki_ g continues, anu the velocity maneuver necessary for insertion into synchro-

nous orbit is determined. Insertion into the synchronous orbit is Ferformed with an

accura,-yof approximately 20 nauticalmiles (1 u) in positionand 33.3 fps (1 o) in

velocity. Ifuncorrected, these errors grow to 231 nautic"_lmiles (i a) in position

and 50.2 fps (I a) in velocityafter 8 hours when the MOT nominally makes rendez-
vous with the MORL at the lineof nodes of the two orbits. Therefore. a midcoursc

trajectory correction is made as soon as possible_about 2.5 hours after ente,-!ng

the synchronous orbit. When lhe MOT arrives at the relativelineof nodes of the

two orbitson itscorrected trajectory,another velocitymaneuver is performed by

the MOT to nmke the MOT and MORL orbits coplanar, and to establisha closing

velocitythat is favourablefor the terminal rendezvous phase. Terminal rendezvous

and docking are then performed with on-board systems.

4.4.3.2 Synchronous Orbit Navigation System _ The manned spaceflightnetwork

(MSFN) ably meets allof the navigationtracking requirements of the MOT syn-

chronous orbitmission. The MSFN, which presently supports the Gemini and

Apollo programs, consists of the rdssion control center (MCC) at Cape Kennedy,

the integratedmission control center (IMCC) at Houston, and communication net-

work for data and voice transmission between these facilitiesand remote sites

thatprovide tracking, telemetry-data-acquisition,command, and air-to-ground

communication functions. There are 1,_remote ground sites,two AtlanticMissile

Range ships, one Pacific Missile Range ship, and any supportip_gaircraftneeded
to simultaneous'y track two spacecraft. The global locationof MSFN stations,

their excellentfacilities,plus the factthatthe MSFN was designed to support

manned spacecraft missions make itwell suitedfor MOT mission tracking support.

During the boost to the parking orbit the MSFN stationsof the AtlanticMissile

Range ",:rackthe vehicle. MSFN stationsin Africa, Australia, and Hawaii and the

mobile ship-based MSFN stationstrack the vehicle in itsparking orbit. During

the transfer from parking to synchronous orbit,the vehicle is tracked by MSFN

sta+ionsinthe United States and by the very-long-range stationsat Bermuda and

,4___igua.When the vehicle is in itsinclinedsynchronous orbit,three MSFN

srmtions(Ascension Island, Antigua, and Bermuda) provide continuous 24-hour

tracking. These three stationsare equipped with the very-long-range (maximum

32,000 nauticalmiles) FPQ-6/TPQ-18 radar system. Because the MOT range

to these stationsvaries between 19,000 and 21,000 nauticalmiles, the vehicle

iswe,_ "ithintheirtracking capabillty, In addition,Ascension Island is equipped

with a Univac 1206 computer for vehicle ephemeris comoutations.
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Navigation System Accuracy--A navigation analysis of the synchronous orbit

was conducted using the Boeing computer program, "Parameters Estimation

from aSet of Observations" (PESO HI). Tracking measurements with FPQ-6/

TPO-I(; radar systems _ere sinmlated a__.1,-mi::ute intervals and plocv.'ssed in

smoothing blocks of 25 measurements. Six smoothing blocks (total of 150

measurements) _ere processed. Total tracking time was 89,400 seconds, or

approximately 24. b hours. This simulates the long-term tracking of the MOT-

MOI/I. system after boost and rendezvous to determine vehicle ephemeris.

Inputs to the program included: (1) the FPQ-6/TPQ-16 radar system measure-

ment errors of 0.15 milliradian (1 o) for random angular (azimuth and elevation)

meast, rement8 and 20 feet ¢1 o) for random rahge measurements (Reference 60)

and. (2j initial uncertainties in position and velocity after insertion into synchro-

nous orbit which are the injection errors of 20 nautical miles (I (y) in position

and 3_. 3 fps (1 Cr) in velocity.

Resul=s show residual uncertaimies at the end of the tracking time for: (1) the

Ascension Island station of 0.89 n._utmal mile (! o) and 0. 372 fps (1 or) in velocity:

and (2) the Antigua station of 1.05 nautical miles (1 cy) in position and 0. 416 fps

(1 o) in velocity. The Ascension Island station yields smaller uncei'_ainties

because of geometrical considerations due to its more central iocation with respect

to the orbit trace o, the surface of the Earth. Although i'esults for the Bermuda

station were not determined with the PESO program, tt,ey are expected to be a

little worse than the Antigua results because Bermuda i,; the least centrally

located station. If the results from _he Ascension Island and Antigua stations

are combined, the resulting unce_Lainties are 0.67 nautical mile (1 a) in position

and 0.272 fps (1 (r) in velocity.

A second series of PESO runs were made w:_h the measurements made at 1-minute

intervals. Once again measurements were processed in smoothing blocks of 25,

and .c, smoothing blocks were processed for a total of 150 measurements. Total

tracking time was 8940 seconds or about 2.48 hours. This was to simulate

short-term tracking of the MOT after insertion into synchronous orbit in order

to evaluate the required velocity corrections. Results show residual uncertainties

at the end of the tracking period were: (1) 2.75 nautical miles (1 cJ) in position

and 3.04 fps (I (_) in velocity for the Ascension Island site, and (2) 2.81 nautical

miles (1 (_) in position and 3.15 fps _1 or) in velocity for the Antigua site. if

tracking data from Ascension Island apd Antigua are combined, the resulting un-

certainties are 1.82 nautical miles (1 (_) in position and 2.05 fps (1 (_) in velocity.

These uncertainties are larger than for the o,.e-measurement-per-10-minutes

results even though 150 measurements were processed in both cases because

tracking takes place for only about 0.1 of the orbit while the one-measurement-

per-10-minutes results involve tracking over the entire orbit. Figures 4.4-2

through 4.4-5 are graphs of navigation position and velocity uncertainties as a

function of tracking time for the Ascension Island tlacking site for both long-

and short-term tracktng. Note the leveling off of the long-term tracking position

and velocity curves, which indicates that longer tracking time would decrease

the uncertainties only slightly.
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Navigation System Problems: Detached Modes versus S(,,t Gimbal--L,ong-term
navigation for the MOT-MOP.L system in the soft-gimba! mode presents t,,j _peeial
problems. The tracking radar wtil track a single transponder of the combined
vesicle. In the detached mode, the two vehicles are never to be more than 1-nautical-
mile apart; thus, both vehicles are within the ground radar beamwidth. It is
impossible for the radar to differentiate between the two vehicles. Ex,en if the
ra,'ar command coder is used to separately interrogate the MOT and MORL
transponders and then simultaneously track the two vehicles, position detcrmina-
tion with ground tracking is only good to 0.67 nautical mile (1 or) (two radar
combined) _ a distance insufficient to meet the l-nautical-mile specification for
vehicle spearation. It is proposed to use the rendezvous radar to measure the
relative range and range rate between the MOT and MORI, and to use the MORL
computer to: (1) process the d:',a to determine the relative position and velocity
of the two vehicles; and (2) to o _,,rmine if and when stationkeeping velocity
impulses are necessary. It is concluded (see Section 3.4) that stationkeeping
requirements for the synchronous orbit are greatly reduced because aerodynamic
drag is no longer a significant perturbation. It is therefore probable tbat the
rendez,rous radar will not have to be run continuously for stationkeeping measure-
ment purp,)ses.

4.4.3.3 Synchronous Orbit Rendezvous Guidance Description -- The baseline
ascent and rendezvous-trajectory profile presented in Section 3.4 indicates that
MOT-MORL rendezvous should occur at the relative line of nodes of the MOT

and MORL orbits, 8 hours (120 degrees downrange) after insertion of the MOT
into synchronous orbit. Accuracy for the MOT insertion in synchronous u,l_it
is 20 nautical miles (1 or) in position and 33 fps (! o) in velocity. These position
and velocity erro':s correspond to orbit errors of 0.36 hour (3 _) in period, O. 6
degree (3 o ) in inclination, and 0. 0074 (3 _) in eccentricity. If 1,_ft uncorrected
these errors will propagate during the 8 hours of travel to reach the rendezvous

point. Figures 4.4-6 through 4.4-11 are plots of the propagation of the initial injec-
tion-altitude, altitude-rate, downrange, downrange-rate, erossrange, and crossrange-
rate errors along the orbit. At the nominal rendezvous point 120 degrees down-
range (15 degrees of arc corresponds to 1 hour, thus 120 degrees represents 8
hours) the insertion errors will have grown to 231 nautical miles (1 o ) in position
and 50.2 fps (1 cr ) in ,oelocity. This position error at the rendezvous point is
entirely too l_.rge and indicates _he necessity for performing a ve,ocity correction
mmmuver. The large 231-nautical-mile (1 a ) position error at the rendezvous
point is almost entirely caused by the initial insertion'-velocity error of 33.3 fps
(1 cr ), which, in turn, results primarily from control errors during the inseJ tion
maneuver.

Ar,alysis of the Velocity Correctmn _After insertmn into synchronous orbit,
the MOT will be tracked at the fast tracking rate (one measurement per minute)
for 8940 second,_J (about 2.48 hours). The velocity correction will then be made.
At this point the insertion errors have propagated to 54.3 nautical miles 11 (_)
in posit: a and 38.4 fps (1 c_ ) in v ?locity. Navigation uncertainties are 2.25
nauti ,L miles (1 a } in position ant 3.04 fps (1 (3) in veiccity for tracking from
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Ascension Island and i.$2 nauticalrelies(1 g) in positionand 2.05 fps in velocity

for combined tracki.r_gfrom Ascension Island and Antigua. Control uncertaintieso[

1 per'cent(1 g) in velocitymagnitude and 0.01 radish (1_) pointingaccuracy

were selectedas realisticcontrol errors for the projectcd 1980 time period.

'Fh_above nu_,bers were used as inputto the Boeing Ol'bitalMission Analysis

Program (BOMAP). The program computed the required velocitycorrection

and the errors resultingat rendezvous due to navigationand control uncertain-

ties. The required velocitycorrection was 56.1 fps (1(_). This velocity

correction resulted in a velocityerror at rendezvous of 19 9 fps (1 a ). Contcol

,_rtorscaused positionand velocityerrors at rendezvous of 3.63 nauticalmiles

(1 g) and 1.82 fps (I g). respectively. Navigation uncertaiuticsproduced e,-rors

at rendezvous of i8.7 nauticalmiles (1g ) in positionand 8.5S [ps (1 o ) in velocity

for trackirrgfrom Ascension Island only and !2.7 nauticalmiles (1 (_) in position

and 5.8_ fps (i (_) in veloci+,z-fur tracking from both sitescombined. To_al

control and _navigationerrors are 19.0 nauticalmiles (lg) in positionand 8.77

[ps (I g ) in velocitylot Ascension Islandtracking and 13.z nauticalmiles (1 g) i.n

positionand 6.1G fps (i a ) invelocityfo_"cembined tracking. The totalv_[ocity

error at rendezvous is 21.74 fps (!o ) for Ascension Island tracking or 2C.83 fps

(1o ) for combined tr._C'd_Lg.This number reprcsei;__sthe one-sigma braking vuiocity
impulse that must be applied, at rendezvous point,to the MOT to ensu_'e"hat it

returns tc [he proper circular ._yuchronousorbit. J.

In addition,the relativeinclinationdifferencebetween the MOT and MORL orbits

must be zcroed. This differenceoccurs from two sources _launch-window

effects,and crossrmlge injectionerrors. Velocity requh-emer,ts are 150 fps

(maximum) to eliminate launch-window inc}inationeffectsand 128 fps (3 (_)to elimi-

nate injectioninclinationerrors. When these numbers are _'ootsum squa_'edwith the

three-sigma required braki_g-velocitycorrection, the m_gnitude isobtained of

the totalvelocityimpulse required at the rendezvous point,which is 207.7 fps.

(The differenceis negligible,206.9 fps, for combined sitetracking). After the

rendezvous-velocity impulse the vehicles willbe in the same orbitM plane with

a separatienof no more than 19 nauticalmiles (1 _) and a very small velocity
difference(_=2 fps (1 o)). At thispoint, the MORL rendezvous radar willbe used

and, on the basis of radar measurements, MORL computer computations and visual

observations, the MORL crew willoperate the MOT controls via a data linkto

dock the vehicles. Itis conservatively est,mated that 50 fps willbe required to

effectthe terminal rendezvous and dockir,g maneuver. Adding the firstthree-sigma

velocitycorrections (168.3 fps since I _ is 55.1 fps),the rendezvous velocity

impulse, and the AV required for docking, 426 fps i_ obtained as the maximum

AV required for rendezvous and decking.

Detached Mode Rendez,;ous---In additionto the docking of the MOT to the MOP.l.

for ir.itialsetup and aiig_.ment,itwillbe necessary to dock the vehicles periodically
for routinemaintenance purposes when in the detached mode. Since tbe vehicles

;rill be within 1 nautical n:de of each other at all. times, the docking will be done

visually with range and range rate information determined by the rendezvous radar.

Because ,,vhicie sepa;'ation is small, only a few feet per second should be required

to effcct docking.
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4.4.3.4 Conclusions and Reconlmcpdations -- No special difficulties in navigation

and guidance are anticipated for the proposed synchronous orbit MOT. In fact,

synchronous-orbit operati'Jn exhibits certain advantages from a navigation and

guidance viewpo int.

Navigation- "[he MOT-MORL system is always in view oi three radar tracking

site'- so that continuous tracki_ng is Oossible. For very-long-term tracking (from

3 days to s_vcral weeks), only ,,.__1i,,_"_o,,_improvement in posi! ion ac--',,'noy,_.... is anticipated

ta excess of the 24.8-hour tracking accuracies discussed in Section 4.4.3.2. Even

the 24.8-hour tracki-g accuracy is good enough to suggest routine tracking from

o:dy one sit,', preferably Ascension Island. if certain experiments require very

preoise navigation information, tracking information from all t'_ree sites could

be con_bined. With three sites, the improvement over the O. 67-nautical-mile

position accuracy of two sites _ould be relatively slight since Bermuda would
add the least accurate data.

It is concluded that long-term synchronous-orbit navigation appears to yield more

accurate position and velor,_ty informati _-_ than navigation in the low Earth orbit,

principally bez:ause on-boal ,t e_trapo!_ is annecessary for synchronous-orbit

operation. This also reduces on-bo_,rd computer requirements.

Stationkeeping requirements for detached-mode operation are considerably reduced

for the synchronous orbit, because aerodynamic drag is not a significant perturba-

tion. Operation time o_.the rendezvous radar to provide relative-motion data can

be reduced with the resulting benefits of longer radar life, lower power require-

ments, and reduced on-board computation requirements. Fuel consumption for

stationkeepipg is also greatly reduced.

Guidance--As previously noted, guida:me and rendezvous profiles differ consider-

ably for the synchronous and low Earth orbits. Synchronous-orbit-injection errors

impose a requirement for a velocity correction to reduce terminal position er_ors

at rendezvous. It is advisable to provide tracking from two radar sites to minimize

navigation uncertainties prior to the velocity correction. This will reduce the

position error at rendezvous, caused by control errors, and navigation uncertainties

by reducirg the contribution of the dominant navigation uncertainties. Synchronous-

orbit rendezvous requires a maximum _Y of 426 fps (2-hour launck window).

4.4.4 Electrical Power

The electrical power svbsys:em concepts selected for the soft-gimbal and the

detached modes of the MGT synchronous orbits are based on general MOT constraints.
The specific power system constraints and assumptions are:

1) Power is sun.,?.iied b'/an on-board power system during launch, rendzzvous,
docking, and opera';ional phases for the detached mode.

2) Power lbr the sof;-gimbal mode is supplied by a. on-board power source

during launch, rendezvous, and docking and by MORL during the operational
!_hase.
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3) Power load profiles for the soff-gimbai and detached modes :)£ the synchror.gus

orbit are essentially the sah,.e fer the low Earth orbit: however, the load

profiles for Sun-occuitaclon perJods are charages (sec Figures 4.4-i2 and

4.4-i3 for the synchropvus orbit}.

4) The selar cell pane]_, are oriented to the Sun by articulation of the panels

:_.ith respect to the MOT pitch axis and by rolling the MOT about the roll axis.

4. "._.4.1 Soft-Giml:,al Mode --An on-board powci" source is required for the

soft--gimbal mode only during the launch, rendezvous, ana docking ano power _s

supp. ied from MORL during the operational phase. The power subsystem load

profiles are the same for the soft-gimbal modes of the sy,_chronous orbit and

the low-Earth-orbit missions during launch, re'_dezvous, and docki._. Hence,

the primary silver-zinc battery specified for the iow Earth orbit soft-gimbal

mode is also suitable for the soft-gimbai synchronous mission.

The on-board power subsystem will provide:

l) On-board pewer supply, consisting of two primary silver-zinc batteries

capable of supplying 4800 watt-hours of electrical energy for launch, rendez-

vous, and docking; estimated weight of batteries if 110 pounds;

2) 28-volt d.c. bus and associated circuit breakers, control, and protection;

circuit breakers wili include direct-current load breakers, battery breakers.
and MORL-MOT d. c.-system tie breakers and disconnects.

3) 115/200 volt, 3-phase, 400 cps alternating-current bus and associated circuit

breakers, co_Jtrol, and protection. Circuit breakers wii.1 include alternating-

current load breakers, and MORL-MOT alternating-current system tie breakers
and disconnects.

4.4.4.2 Detached Mode _ Figure 4.4-14 summarizes the power subsystem

characteristi.cs and shows differences in the requirements of the synchronous

orbit and tbe low-E,_rth-orbit missions. Figure 4.4-15 is a schematic diagram

of the on-board electrical power subsystem center!i_m concept selected for the

synchronous orbit. This system supplies power requirements during all phases

of the mission. The power syste_ basic concept is the same as the low-Earth-

orbit mission, However: some component ratings and sizes, and type of battery
are (.hanged.

Assumptions used to calculate power source and equipment sizes to meet the

requirements shown in Figures 4.4-12 and 4.4-13 are discussed below.

The battery supplies the total energy (including lossc,_) of launch, rendezvous,

and docking. This requirenmnt is essentially a single battery discharge-charge
cycle of 4800 watt-hours.

The battery also supplies the energy pulses (including losses) of 2820 watt-hours,
for about 80 depressuriza_ton cycies.
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Ra:ing Size Weight (lbs)

Syrchro- Low Synchro- Low Synehro- Low

Item nous Earth nous Earth nous Earth

Solar Pan.cls 930w 1515w 132 ft 2 216 ft 2 1.96 324

Batteries and 3890wh 3430wk 1.3 ft 3 4.5 ft 3 212 593

Installation (AgZn) (AgCd)

i{c_dators 5000w 5000w 2140 in 3 2140 in 3 75 75

Inverters _500w 4500w 5150 in 3 5150 in 3 180 180

Battery 220w 745w 165 in 3 430 in 3 8 15

Chargers

Distribution .... 250 250

System

Total .... 921 1437

AgZn - Silver-Zinc Rechargeable Battery

AgC d = Silver-C admium Rechargeable Battery

Figure 4.4-14: ELECTRICAL SUBSYSTEM SUMMARY

During Sun-occultation periods of the mission (maximum of 1.2 hours every 24

hours) all pow¢x" is supplied by the battery, Figure 4.4-13 shows the relationship

between depressurization load pulses and Sun occultations and shews the energy

blocks that must be supplied during a few occultation cyclea beginnhlg with a

maximum battery energy demand occurring when a depressur_,zation cycle is

coincident with the longest occultation time. Battery sizing is based on the maxi--

mum requirement of 3890 watt-hours and 100 cycles of service. Most battery

cycles will be about 30 percent less than the 3890 watt-hours; however, this

maximum condition is assumed in the battery rating to ensure a 3890 watt-hour

capability, with ample margin of safety, as the mission end.

Battery selection and sizing to meet the maximum duty were based on:

1) Sealed and rechargeable with 1-year life:

2) Silver-zinc usable wh/lb = 20 based on 60 percent depth of discharge for

100 charge-discharge cycles;

3) Silver-cadmium usable wh/lb = 13 based on 80 percent depth of discha,'ge
for 100 charge-disch_ rge cycles.

The solar cells must supply the maximum power of 930 watts, which includes

load, battery recharge, and losses. Sizing of solar panels is based on 7 watts

per square footand 1.5 pounds per square foot including extension and orienta-

tion mechanisms and support structure. Solar panel radiation degradation is
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gre_ter at synchronous-orbit altitudes than at low-Earth-orbit altitudes; however,
7 wa,ts per s_]uare foot is considered conservative even for the synchronous mission.
Battzry charger andsolar pane. requirements for battery charging are based on
a capability of full battery recharge in 23 hours.

Efficiencies used i_1the calculation of losses are:

1) Battery charge-discharge = 78 percent;

2) Battery charger = 90 percent;

3) Voltage regulator = 90 percent;

4) Inverter = 90 percent;

5) General distribution = 94 percent.

4.4.4.3 Conctusions and Recommendations -- The power subsystem electrical
load profiles are essentially the same for the synchronous orbit and the low-Earth-
orbit missions. The load profiles differ, however, relative to the Sun-occultation
periods. The following conclusions point out significant comparisons between the
power subsystem concepts of the synchronous and low-Earth orbits.

1) The primary silver-zinc battery, specified for the low Earth orbit soft-gimbal
mode on-board power supply, is also suitable for the soft-gimbal synchronous
mission.

2) The eenterline solar-cell/secondary-battery power system b_sic concept,
selected for the low-Earth detached mode, is also suitable for the synchronous
detached mode.

3) A smaller number of battery charge-discharge cycles is required in the

detached mode of the synchronous mission. The selected silver-zinc secondary
battery weighs 380 po,._,nds less than the silver-cadmium battery required to
meet the relatively large number of battery load cycles of the low-Earth
mission.

4) In the synchronous orbit, more tim,_ is available and less power is required for
battery recharge. As a consequence, the solar panel area required for
synchronous orbit is about 40 percent less than the low-Earth requirements.

5) Weight of the total power subsystem for r_ynchronous orbit (detached mode)
is 515 pounds less than the corresponding system for the low-Earth mission.

The following recommendation is submitted relative to load-profile/power-system
optimization: the depressurization cycles should be scheduled to avoid the longest
Sun-occultation periods. This power profile _ptimization can result in a further

reduction of bat'ery weight and solar panel area requirements for battery recharge.
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4.5 FLIGHT-PERFORMANCE COMPARISQN-- LOW I:ARTH OIiBIT VS
SYNCHBONOUS ORBIT

Primarily because the S-IB and the S-V boosters are u ell-suited for both the
low-Earth- and the synehroraus-orhit MOT operations, respectively, neither
operation encounters serious flight-performance problems. Use of the Apollo
eommat:d module also facilitates these operations, e.speeially the synchronous-
orbit operation. As a eonsequenee, neither operaticn is distinctly inferior or
superior to the other, so the selection of the MOT orbit can be based on other
criteria.

The following paragraphs discuss flight-performauee differences of the low-
Earth- and synchronous-orbit operations; but, none of these differences are
considered to be of decision-making magnitude.

4. 5. 1 Latmch and Rendezvous

Comparison of the synchronous- and low-Earth-orbit MOT operations with the
usual flight-performance _V figure of merit is not sufficient because different
boosters are used for the high and low orbits. More significant constraints in
this case of different boosters are payload margin and overall mission costs.

The time required to rendezvous is different for low-Earth- and synchronous-
orbit operations. In itself, time required to rendezvous is not of gre _ signifi-
cance; but, its impact on subsystems and suppm.ting systems can be significant.
The time required from launch to rendezvaus in the synchronous orbit is nomin-
ally 15 hours (about 7 hours if a coplanav launch is achieved). The time required
to rendezvous in the low Earth o_bit can be kept to about 1 to 2 hours by means
of non-coplanar launches. In this mode of operation for the low Earth orbit, the
rendezvous vehicle is launched as near coDlanar with the MORL as possible, but

with the exact lammh time determined by *_hephasing of the target, i. e., phasing
is acMeved by holding on the launch pad rather than in a phasing orbit. All
possible phasing of the MORL will occur in one MORL orbit period; _hus, it is
necessary to have a launch window of only one orbit period to ensure the desirc_i

phasing. With a 28. 5-degree inclined MORL orbit, the maximum plane change
that will occur daring this launch window is less than 9. 5 degree. This amount
of plane change can be handled by the S-IB booster by tttrning during boost at a
cost of only 200 pounds of payload, relative to a due east, cop!anur launch.
Therefore, the subsystems aboard the logistics vehicle must be operational for
about 15 to 20 hours for the synchronous-orbit mission and operational for only
1 to 4 hours for the tow Earth ,orbit.

With the out-of-plane ascent 'mode for the low Earth mission, the ground tracking
and communications networks need not be any more extensive than for the synch-
ronous-orbit missio_ during ascent and rendezvous. If a phasing c_'bit is used

' for low-Earth-orbit rendez_,.us, long wait times in the phasing orbit can be
encountered; this wait would tie up extensive tracking facilities, including ships.
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4. =,."2 ,}rbit Kt'epin._

Due l,j ae._'o{Ivnaw, ic (lra_, 575 p{,und8 ol l}roo_'!!af]: arc P{',luir{:{l p_.r yc.az ttJ

mai:,taip, a (tetachc_! .Mini in a 2.5(_-nautl{al-n;lic orbit. I)uc to graxity pe,'turba-

t_,,,'-, of the" Sun _ml :,]oon, 500 i}ound.., ,}f propcllan! are require{! to maintain a

{!c:.achc{l M.;'I in svn{'l'JPon_,z_'__ oPb_f... Thi_;.. ,-'=rr.,,,,t:i_cm.t: in orbit- keel}in _ prol}ellant

r{quirements for these two mode8 is not stfffi{-ient to conclude that one T.lode is
sat}e:'ior to the ,}theP.

!n the synchrono_:.._ qrbi_, orbit-keeping corrections are necessary oniy every

:10 days, i. e., just be'£,Jre each rendezvous, whereas, in the 250-nautical-mile

arbit, orbit-keeping manuevers are necessary at least every 45 days and, on

occasion, as f"e{luenl_y as every 15 days. Fven this may not be a sigr.ificant
di!fe:'ence.

The AV's require-I for stationkeeping beyond those required for orbit-keeping at
these two orbit attitudes a,'e insi_fifieant; however, the frequency of maneuver

•nay be siLmifieant ,because at 250 nautical miles, stationkeeping may be nee-
cssary as frequently as .q l-ours; but, at synchronous-orbit altitude, station-

1.eepingdt._ to external disturbances is necessary no oftener than 30 days.

"l-he above {liscus8ion :,i.,nilarlv applies to the soft-_mbal eonfig-uratiort.

4.5.3 Re-Entry

"1he environment of entry ft-om synchronous orb'.t is far more severe than the

enviropmcnt of eh'rv from a 250-nautical-mile orbit, and the entry corridor is

mole Pestricted when returnin_ from synchronou_ orbit. However, the Apollo

-_:vst':m is designed for entry from the Moon; this entry is more severe and

restricted than entry from _vnohronous ocbit. By the time the MOT is opera-
tiona:, tqe capability of the Apoll._, to entt.p from the .Moon will have been demon-

stratcd so that entry should present no serious threat to the feasibility of the
syneh.'onous-orbit MOT.

The :'ecovery zone for return from synchronous orbit is relatively small (see

Figure 3. 4-1) irrespective of where the synchronous orbit i_ departed. The
recovery zone for return from a to,v Earth orbit is somewhere betweez: 28.5°N

lati,'ude and 28.5°S latitude depending on orbit departure. However, if the same

time for return is allowed from the low Earth orbit as from synchronous orbit

(about 6 hours), the longitude of the recovery site can be similarly localized or,
stated another way, greater flexibility m recovery zone location is possible from
the low Earth orbit.

4. 5.4 Conclusi,ms

There is no sermus flight-performance problem that threatens the feasibility of
either the low-Earth-orbit MOT operation or the 3ynchronous-orbit MOT
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operation. As a consequence, neithe,- operatior cn.ic,.v5 a distinct super!oritv

over the other with ,-,_,,mo: io flizht-perfol-mance considerations.

I he synchronous orbit mav have a _;light operational advanta._e in that atation-

keeping operations are required less frequently.

in case of ad:-ersitie3 during deorbit maneuvers, a s_fc Earth return f:'om the

lov. Earth orbit is more pl _,bable than frz;;-,, "he synchronous orbit.

Selection of the MOT orbit can be based on "'riteria other than flight _.erforman(.e.
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Beforu t.,_mpar_n_ the capabilities of fl_,: .M(YI in synehrenous orbit with those, in

tht !,)w t-'avth _)vbit, it ,:as m.c::.;sa_ to establish cemmoc, baseline_. "lb':s

required up,!ating ILe lo',:-l':avth-o:'bit prod=ram to the same criteria u>::d for the

avnchronuus-u:'bit sltldy. This vpdatin,,.: included consideration of the effect of

:-a.diaii_,:_ ,.';_ the phol,ogvaphie film and reailocation of the percentage of time

assig,_.:d to lfit:h-dispersi,_m LV and visible observations. It :'.as determined

a!:ev the initial (low-Earth-orbit) study that it v-as more realistic _.odevote mor,..'

time to high-:h_,, er_i:m UV observations by the MOT, Fio-ure 4. 6-1 reflects

the updated l-year program summary for the low Farth orbit, including these

, evisions plus consideration for large-seale phetography .-,r planetary objects.

"l'i:e latter item was omitted from the previous study, but reprcsehts an impor-

tant astronomical capability from an orbiting telescope.

The comparison then was based o_, "he same ex-periments being conducted for the

same percentage or time per ,'ear. There are t,,'o approaches in determining

the nu::.,ber of trips required be{,:'ecn the MORL and MOT to replace the film.

Either the number of trips is nearly doubled in synchronous orbit to be compatible

with the increased observation capability, keeping the size of the film easettes

the same, or ff;e nu:-aber of trips is kept similar and the size of the easettes

increased. The larger film pack is considered to be of a reasonable size. rhe

iacrea':_e in number of trips required between the MORL and MOT results in a

pe_.alty m terms of time ,'rod expendables. Therefore, the frequency of trips was

kept the same and the capacity of the film packages inexeased. Therefore, there

is no difference in the typical program represented on Figure 3.5-6 for the syn-
chronous orbit as compared to the low Earth orbit.

From an operational standpoint then, tbe relative differences occur in the obser-

vation time available and in the amount of 4ata obtained, neglecting the MORL

crew time differences that would, exist for developing, analyzing, and handling

the greater voltmm of data. Detailed analysis o{ crew duty aboard the MORL

is not included as an objective of this study.

4. 6. 1 Observation Time

Potentially, 24 hours per day are available for observations (from synchronous

orbit) of stellar objects and 22.4 hours per day for planetary targets. From

the 1ox_ Earth orbit, 45 minutes d.l.ving each 90-minute orbit or a total or 12

hou:-_ pc,.- day is available. Appr,Jximately twice as much observation time is

therefore available from the synchronous orbit as from the low Earth orbit;

this ':s shown by comparing the data in Figures 3.5-7 and 4. 6-1 for the synchro-

nous orbit and low Earth orbit re::pectively.
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-:. ,,. _ l-xpevinlent 1.7×l)emlabie_

"1he principal funehon of the .MOT is to make scientific observations of planetary

:rod stellar bodies and to provide a permanent record of these observations.

Material fer these records constitutes the experiment expendables.

()bser',ations fall into four general ctassifieations: photography, pbot(.metry,

spectrometry, and pola:-imetry. Phoiography is further divided into the three

subcategc_ries of narrow-field, wide-field, and large-scale photography. Photo-

nmtrv is sub&vialed into photoelectric and thermoelectric processes. Spectro-

metry is subdivioed as low-dispersion, high-dispersion (UV), and high-disper-
___,_,nspectra (!R). Po!arimetry is subdivided as thermoeleet.,-ie measurement

and photoelectric photometry.

Recorders and recording media for the various ucientific observations are pre-

sented in Figaave 4. 6--2.

\Vide-field photography is recorded on roll film _16--by 16-inch format) ,'rod

large-scale photography is recoi-ded on 2-- by 2-inch plates. Low--dispersion

spectrographic data is lecorded on 0.6- by 0.6-inch slides; high-dispersion

spectrographic data is recorded on roll film 1.4 inches wide. The remainder

of the data is recorded on rolls of 0.5-inch-wide magnetic tape.

"]'he number of exposures for eac,L type of observation and the resultant number

and size of recording media cassettes are shown in Figure 4. 6-3. The approxi--

mate size, volume, and weight of recorder media are illustrated in Figure
4. 6-4.

Data for large-sea]e photography of pianetar_v objects is omitted f, om Figures
4. 6-3 and 4. 6-4 because the poten i_l quantity of exposures for observation of

the planets is very large duc- to the relatively short exposure time (1 t_ _.5

seconds) per photogi aph. It is assumed that even tho_gh the quanti*> of expos-

ures may be in the thousands, a 70-millimeter eamm'a could b:: used, thus

placing the weight and volume of film considered wi'.hin tee 100-percent growth
allowance for logistics.

4.6.3 Conclusions and Recommendationo

\Vhen comparing the teiescop," ase time provided in the soft-gimbal mode and in

the detached mode, it w_._, assumed that shuttle travel would be accomplished in

parallel with telescope operation. This would not reduce the potential observa-

ti,._i, time fro" :;,e detached mode. Docking, pressurization of the MOT cabin, and

ltle cre".-transfer operation would then be identical for both modes. This may be

,q : easonable assumption for normal operation; but, in event of an em.crgency or

malfunction that halted telescope operation, the shuttle entry, checkout, and

lvansil time to the MOT would subtract from the total time available. Also,
additional manhours are expended fc,r crew transfer in the de "tached mode.
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Ti,erelore, (m the basis of these considerationa, the s,_ft--gimbal concept is the
lllOSt tavo,-a',)lc mode,

A pcima,y factor in the comparison of low Earth versus synchronous orbit, from

the ,.,pe, ational standpoint, is the available observation time. As diseu:_,,ed in

Section 4. (_, approximately twice the amour)t of time is available from syneh-

t',,:',.,us orbit as from low Earth orbit. Figures 3.5-7 and 4. 8-1 indicate that the

available observation time per year from low Earth orbit is approximately aa60

hours compared to '.1657 hours from synchronous orbit. A significant advantage

from synchronous orbit is the capability of obtaining continuous observation

dur:ng a 24-hour orbit as compared to e maximum of 45 minutes out of each

90 minutes when in the low Earth orbit. Therefore, a comparison based o_

telescope use or observation time indicates that the synchronous-orbit concept
would be "*-........... "_-'-u,_ • evuh,m_nu_d mode.
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4.'7SYSTEM _VALUATION

Definition of the comparison criteria for the MORL-MOT concepts is urosenied

in the following sections together with a summary cornparJsen of the four MOT
operational ,2oncepts. Advantages and disadvantages are discussed for the MOT
operating in the soft-gimbal mode versus the detached mode and for operation
at synchronou_3-orbit altitude versus a low-Earth-orbit altitude of 250 nautical
miles.

4.7.1 Comparison Criteria

The following defined criteria are those considered significant for comparison
of _he various MOT concepts of operation. In general, the criteria are zimilar
to those useO for evaluation of the basic study low-Earch-orbit concepts nd
documented in Section 4.8 of Reference 1.

Technical Risk--defined :s the probability of systems not meeting design or
operational requirements by a specified operational date. Technical risk is
measured by assessing new and unsolved design problems that are required
for each concept.

Reliability -- defined as the probability that the vehicles and subsystems will be
available for operations.

Safety _ measured as the probable number of fatal accidents per year ol opera-

tion. The major safety hazards result from: (1) docking the MOT; Apollo,
and the shuttle vehicles; (2) repositioning of the Apollo, logistics modules, and
the shuttle vehicle; (3) radiation and micrometeoroids; and (4) handling pro-
peliants, gases, and electrical equipment.

Flexibility--defined as the ability of a system to perform alternate missions
without major modification to vehicles or eqmpment.

Accessibility to Man -- reilects the ease with which the crew can accomplish
servicing, checkout, and maintenance tasks.

Man's Ability _o Perform Assigned Tasks -- measured by the man.hours required
to perform MOT ............. _....... _ _'- _-'__n_u_.ou-t, aiiQ maintenance operatior, s._tllU

Logistics Weight- defined as the weight of logistics supplies required to support
the MOT for 1 year of operation.

MORL Interface Problems --- evaluated in terms of the ability to porform MORL
experiments in addition to the MOT experiments.
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Observation Time --defined as the total hours avai!ab!e per day ned per year

for observation with the telescope and as the maximum available time per
continuous exposure.

Thermal Distortions- defined as physical distortions of tile primary mirror
and the telescope tube caused by temperalure gradients throu_,.lout the components.

Micrometeoroid Hazard-- measured in terms of potential damage to *,he primary
mirror and probability of penetration of the w_dls of the baseline configuration.

Radiation Hazard - measured in terms of shielding requirements for the crew
m_d photographic film, the extent of performance degradation of the exposed
optical surfaces and thermal coatings and effects on system operations.

Attitude-Stability-and-Control Requirements -- m( asured in terms of the magni-
tude of the disturbance environment and the resultant requirements on the attitude
stability and control system physical characteristics.

Flight. Performance -- defined in te_ns of (1) time to rendezvous, (2) frequency
of stationkeeping reboost, (3)time +_ .'_,_n to Earth, (4) recovery area
requirements, and (5) en+.ry - ',-- h ,. _ "_"

Data Management, Comm,.mications, and Guidance and F l,-.ctrical Power _ de-

fined in terms cf vehicle and ground system requirements _d complexity.

Cost -- measured in doli;_.r r.ost of launch vehicles and la_;_, support. Costing
of the other factors of th_ _RL-MOT systems is beyon.', ¢_. scope of this
study and is not consider_S, essential to a comparison of _!,- ,_ystem differences.
Except for the different In,. ach vehicles required for ap, :_n in synchronous

orbit as compared to low _:_ t":k orbit, the MORL-MOT " zeros are judged to
be similar in relative cost.

4.7.2 Systems Comparison

A summary comparison of the four MOT operati_):_. ,_ystems is presented in the
to!lowing sections with regard to the choice of mode of operation and the choice
of orbit altitude.

4.7°2.1 Mode of O_eration -- The criteria that affect the choice of mode of
operation arc:

1) Technical Bisk;

2) Reliability;

3) Safety;
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4) 1. lexibilia.y;

5) ,:zcessibility to Man;

6) Man's Ability to Perform Assigned Tasks;

7} Logistics Weight;

_) MORL Interface Requirements;

9) Attitude Stability and Control.

Of these criteria, only th_ logistics weight and tbe attitude-s_ability-and-control
system are significantly affected by the operational orbit altitude. Operation in

the detached mode requires less logistics support (measured in pounds of spares
and expe..dables) for the low-Earth-orbk case, while the synchronous-orbit-
case is favored by operation in the soft-gimbal mode. The detached mod_ is
somewhat preferred in the synchronous-orbit case with re.spect to attitude- sta-
bility-and-control system requirements because of the red teed disturbance

environment. However, the penalty for olceration in the soft-gimbaL mo_ is
small.

Pro and con disc,ussions of the remainder of the criteria listed above apply
equally well to opera_ion in either orbit; these are presented in Section 4.8 of
Referenc_ 1. In the low-Earth-orbit study the soft-gimbal mode was determined
fo be preferable. The effects of logistics weight and stability and control-system
characteristics, as discussed above, are not considered to be large er.ough to
change the preference for the soft-gimbal mode in a synchronous orbit. The
advantages of direct access to the MOT from the MORL, elimination of ,equire-
merits for stationkeeping of the MOT with respect to the MORL, elimination of
the shuttle wnicle, and elimination of a self-sufficient electrical power system
from the MOT are considered to be worth development of the s_ft-gimbal syste,.n.

4.7.2.2 Orbital Altitud_e _ The comparison criteria pertinent to the selection
of an operaLional altitude include:

1) Observatm_ Time;

2) Thermal Distortions;

3) Micrometeoroid Hazard;

4) Radiation Effects; k

5) Attitude-S_aBility-and-Control System Requirements;

6) Flight Performance;

• 0el8) Logistics We_ont;
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e) I)-tta Managcment, Communicatior_, Guidance, and Electrical Power

Systems Characteristics;

9) Cost.

()bservation Time- The avail_Llv obser,,ation time for the telescope is dis:_us3ed

in. detail ;o S,_'cLioh 3.5 and in RL ference 1 for operation in synchronous orbit awl

in the low Earth orbit, res,ecticely. The more significant results are presented

in Figure -i.7-1. In generat, approximately twice as much time is available for

observatior_s from a synchronous orbit as from a low Earth orbit.

Low Earth Synchronous
Orbit Orbit

Potentially Available Time Per Year 3360 hrb 6657 hra.

Total Acai!ablc Time Fer Day (24 Hrs) 12 his 24 hrs

T3._cof Observation Per 24-Hour Day Intermittent ContinuotLs

AvailableTime Per Continuot_ Exposure 45 minutes Virtually
T,:ii-:mited

Figure 4, 7-1: OBSERVATION T_J-E cOMPARISON

Thermal Distox_ions -- Degradation of the primary mirror performance by ther-

mal distortion in synchronous orbit i._ reduced considerably from that in the low

Earth orbit. The RMS deviat.:on is reduced by a factor of approximately 4.5 to

7.5 as sho',xm in Figure :.. 7-'-., however, the performance in !aw Earth orbit is

w,thin d_e accept..bie limit.

RMS

Deviation

Synel,ronotm Orb i-.

Perpendicular to Solar Vector )`/332

Parallel to Solar Vector _ Dawn ),/226

Parallel to Solar Vector--Noon ),/372

I.ow Earth Orbit

Perpendicular to Solar Vector )`/50
O

• Minimum Required Primary Mirror Quality )`/30 at 5000 A

Figure 4.7-2: PRIMARY MIRROR THERMAL DISTORTIONS
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Micrm__3eteoroid Hazard- Direct meteoroid damage to the prinmry mirror ip
synchronotL_, orbit is somewhat greater than in tim low-Eal_h-ccbit case. tlow-
ever, the effect on the useful life of the telescope in either case is negligible.
The useful life before the dam.qge limit is reached is approximately 75 years
[or the synchronous-orbit ca.se and 10! years for tim low-Earth-orbit case.
The probability of meteoroid penetration of the telescope wall Jr,creases approx-
i._nate!y :-;0 percent in the synchronott._ ei'bit over that experienced in the low
Earth orbit, but is still a minor ceiLsideration,

Ra0iation Effects--Radiation shielding yequirements for operating in synchro-
nous and in low Earth orbits are compared in Y igurc 4.7-3. P;-otection of the
crew _n synchr.'_nous orbit for a 180-day stay thne requires the addition of a

biowell and e.-tra laboratory shielding to the MORL- a subsequent weight
increr ;e of approximately 14,200 pounds. In addition, 15-g/cm 2 goggles must

be worn during solar events. Operation in a low Ea1_h orbit requires wearing
of 7-g/cm 2 goggles while passing through the belts c_"trapped radiation particles.

Radiation sensitivity of film is such that shielding is required at both orbital alti-
tudes and the useful life of the film is limited to approximately 60 days in either
case. Filn- storage for 60 days in synchronous erhii wil! require shielding equal
to a 40-g/cm2-thick aluminum box located within the MGt-II, bio,,vcl!, an additional
weight penalty of appreximately 1000 pounds. Protection in the low Earth o,'bit
,rill require shielding equivalent to a 48-g/cm 2 aluminum bcx in the MORL with-
out the biowe]!. Film in the MOT in synchronous orbit vAll require no additional
shielding duri_g a 7 to 9 day period of use; but, occasionally this film will_ be de-
graded by- radiation from a solar flare; shielding against this hazard is imprac-
tical. For operation in low Earth orbit, a shield of 10 to 15 g/era 2 will be used
around MOT instrumentation ce:.--z;,,ing film.

The pri:.nary mirror perfol_na-.:_- ;,,...,,:ch:-vnvu_ ,_._::._is degraded slightly more
by radiatior, effects than for operation in a low Earth orbit. In 5 years the limit-
mg star magaitude is reduced to 22.6 for ef/15 and 22.3 for el/30 in synchronous
orbiL, _ compared to 22.8 and 22.5 respectively, for th _ low Earth orbit.

Radiation effecss on the MOT external thermal coatings are not signdficant in either
orbit.
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Synchronous Orbit l_ow Eal_h Orbit

Map 15 g/cm 2 goggles (to be worn 7 g/cm 2 goggles to be worn
la0 Days during solar events, addition- when passing through trapped

ally) belts
biowell shielding = 10 g/cm 2 (MORL = 2 g/cm 2)

Film Storage 40-g/cm_-th!"ck box located 48-g/em2-thick box
60 Days in biowell

9

F_lm in MOT None 10 to 15 g/cm "_around cameras

Figure 4.7-3: ADDITIONAL RADIATION SHIELDING REQULREMENTS

Attitude ,_ability and Control- External disturbance torques a're two orders of
magnitude less in synchronous orbit than in low "_--_'- __t.-.... :._:_ ,: ....i'n_l.I t, ll qfl.I. Ulbe _ lbtllll £l.llllt,_,

disturbance torques are beneficial in that constant precession of the control
moment gyros is required, thus reducing stiction and, subsequently, pointing
errors. The external distul-bance effects in synchrono_,.s orbit are quite mini-
mat.

Control ...... +........ m_n. _. o momentum capability required in synchronous orbit is
approximately one-half that required for the low Earth orbit, considering the
reduced disturbances and longer exposure times in s:,mchronous orbit.

The difficulty of aaitude control is not particui,_-ly sensitive to orbit altitude;
however, a slight advantage is indicated for the synchronous orbit. Control
within the required 0.01 arc-second appears feasible in either orbit.

Flight Pe_:formance- A comparison of the flight-performance characteristics
for the low-Earth- and the synchronous-orbit MOT systems is summarized in
Figure 4.7-4. The time to rendezvous is greater for the synchronous orbit
than for the low Earth orbit by a factor between 5 and 8.

_. Rcboost f_,_ _.'r,t!_k-_aping in tho low Earth orbit is required approximately each
9 hours, due p._marily to aerodynamic drag. in synchronous orbit, corrections
are required only once each 30 days.

Minimum elapsed time !or return to Earth from orbit is approximately 1 hour
Q.om the low Earth orbit and increases to approximately 6 hours from synchro-
nous orbit.

The landingand recoveryarea forvehiclesreturningfrom thegenerallyfixed
positionm a synchronotusorbitisa relativelysmall portionofthe Earth'ssur-

taec locatedinthewesternPacificOcean. Therefore,a relativelysmall recovery
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force is needed; bot, return through a narrow entry corridor is required. If
immediate deorbit and descent from a low Earth orbit is made, rccovery may

be anywhere thvo, lghout a 57-degree-wide band extending around the Earth's
equator.

Criteria Low Earth Orbit S__nchronous Orbit

Time to rendezvous ] to 4 hours 8 to 20 hours

Stationkeeping boost 9 hours 30 days
':requency (worst case)

Time to return to 1 hour 6 hours
Earth

Recovery zone Anywhere between 30°N Longitude localized and
and 30°S la£itude for 1- inflexible
hour return

Selected latitude or

longitude for 3-hour
return

Entry corridor Broad Narrow

Figure 4.7-4: IITGHT PERFORMANCE COMPARISON

Logis+ics Weight --The logistics vehicle weight requirements for the synchronous
orbit are less severe with regard to booster capability than for the low Earth orbit,
primarily because of the increased booster capability and tile decreased propel-

lant cargo (for attitude control, stationkeeping, and orbit-keeping) requirements
for synchronous orbit. Propellant requirements for the low Earth orbit are ap-
proximately double those fol the synchronous orbit. Resupply launches are

reduced from one each 90 days for the low Earth orbit to one each 180 days for
the synchronous orbit. A wei_.t sm_mary of the logistics vehicles for the two
orbits is shown in Figure 4.7-5.

180-Day Supply Cycle 90-r_a_y ,_upplvCyele

Synchronous Orbit Low EaCh OrULt

Gimbal Detached Gimbal Detached

CSM 36,225 36, ,175 13,027 i3. 027

MMM 8,438 _,583 6,151 6,201

Cargo 11,284 13,198 _, 755 8,481

Lmmch Weight 55,947 58,256 27,933 27,709

Capability 79,600 79,600 36,000 36,000

Excess +23,653 +21,344 + 8,067 + 8,291

Figure 4.7-5; LOGISTICS VEHICLE WEIGHT SUMMARY
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Data Management and Commutdcati,,ms --The MOT dat',management subsysten'.
and tlJeMOT-MORL communication linksare basically independent of orbita'ti-

tude, being conce1_ed with transfer of informationbetween the MOT and the

M( )EL Jn[y.

.M(_T{L data ma,agement and communications are improved by operation in syn-

ch L-onous orbit in that continuous communication with a ,_ingle ground station _s

nossib!e. The low-Earth-orbit system requires two ground stations and

:tchicvcs a contact time of only an aver-age of 77 minutes per day. For the syn-

chrono_,s-orb!t case, much of the data storage may be loc_ted on the ground be-

cause o[ the cot ;nuous contact with the MOT and MORL.

The singleground stationassociated with the s)mchronous orbitmakes allelec-

tronicallytransmitted data availableat one sitewithout relay, requires the MORL

r)1]_,aintaincontact with only one slowly moving (relative)ground station,eli-

minates the need for rapidlyslewing space-borne antenna, and reduces the
un_.,,_" :;f r_dundant data that must be transferred.

Physical return of film-recorded data is required from either orbitaltitude.

Electrical Power _ The electrical power subsystem used in synchronous orbit

is essentially the same as that for low Earth orbit, but considerable reduction

in systcn= size and weight is gained by operation in synchronous orbit.

In '_he synchronous orbit, detached mode, the solar panels are withot_t _at_iignt

mammum of 1.2 hours per 24 hours, while for the low E._rth .rbit they are

without sunlight for 35 minutes out of each 1.5-hour- orbit. This allows a reduc-

tion of approximately 40 percent in the solar panel size _ from 216 square feet

to 132 square feet _ with a weight reduction of 128 pounds.

Siace the batteriesin synchronoqs orbit are cycled only 90 times per year as com-

pared :o 6359 times per year for the low Eaz_h orbit, sliver-zinc batteries weigh-

ing 212 pounds are used in synchronous orbit instead of the 595 pounds of silver-
cadmium batteries used in low Earth orbit.

Cost---Both the synchronous-orbit and low-Earth-orbit MOT-MORL systems

require launchings each 90 days and use similar vehicles except for the launch

vehicles. Therefore, the significant cost difference is the launch vehic}es used.

Nominally, six ]aunchings are required per year to assemble the MOT-MORL

system in orbit __.ndm_intain it in operation for 1 year of a continuous 5-year

period.

The low-Earth-orbit MO:," -MORL system uses the Saturn-IB launch vehicle with

a cost of approximately $20,5 million per lat, nch or $123 million for a 1-year

period. The s._mchronous-orbJt MOT-MORL system uses a Saturn V vehicle

with a launch cost of approximately $63 miliior oer launch or $378 million for one

year. These typical values of cost per launch include launch services and are
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based on a use rate of 10 per year for a period of 5 years, be_nning Janua_'
1968o

Although the launch vehicle cost is approximately tripled for operation m syn-
chr-mous orbit, the useml observation time of the telescope is essentially doubled,

resulting in an effective launch-vehicle-cost t_ obselwation-time ratio of approxi-
mately 1.5 to 1. Since the iauncb, _hicie cost is only part or the overall system
cost, the relative ,, ,_rease in system cos* .qnd observation time is less than 1.5;
but, a complete and detailed ca,_t analysis is beyond the scope of this study.

A complete system cost analysis and comparison will include consideration of ad-
ditional factors such as detailed design, development, and qualification of space-
craft hardware. Operational support systems, such as tracking systems, cam-
munications requirements, and data handling facilities will have to be defined in
detail and cost charges determined. These will be dependent upon the extent of
nmtual use of these facilities among the MOT and other operational space systems
of the same time period. An extensive plan of program development will oisclose
cost f,qctors that are not diseern__b!e at the present time.

4.7.3 General Conclusions and Recommendations

4.7.3.1 Mode of Opcratiol, _ The study results indicate that the soft-gimbal
mode is preferred over the detached mode for both the s:_mchronous o.bit and the
low earth orbit.

• The choice of mode has essentially no effect on the time available for obser-
vation.

• The soft-gimbal mode is preferable with respect to crew utilization, safety,
accessibility, and overall logistics requirements because of the direct access
between the MORL an,.] the MOT.

• The detached mode is preferable with respect to technical risk because it is
dependent on relatively well-developed docking and shuttle techniques. Use
of the soft-gimbal mode will require design, development, testing, and quali-
fication of a specialized and critical unit of hardware.

4.7.3.2 Operational Altitude _ Operation in synchronous orbit is preferred to
a low Earth orbit, and tbe mode of operation has only a small influence on this
choice.

• Available observation time is virtually doubled in synchronous orbit over that
in low Earth orbit.

• Long uninterrupted periods of observ-ation are available to synchronous orbit.

• The decrea._ disturbance environ-'.e.nt allows the attitude-control system size
to be reduced in synchronou_ orbit.

• The decreased thermal gradients in synchronous orbit result in less distor-
tion of the telescope structure and primary mirror.
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• Eiec_rical-lm_ver subsystcm requirements are reduced in synchronous orbit
[or tile detached mode.

• increase(] radiation protection is required in synchronous orbit ior the crew
and film with the risk of occasional loss of film in the MOT by radiation from
a solar flare.

• Cost of operation in synchronous orbit is higher but may be offset by opera-
tional advantages.

4.7.3.3 P.ecommended Follow-On _udies -- It is recommended thaL future s_udies

oI the manned orbital telescope include the fallowing:

t Design, man,!facture, an(J development of a 12o-inch primary mirror.

• Investigation of the attitude-control system in detail beyond that of the pre-
sent studies.

• Design and further evaluation of soft-gimbal hardware.

• Further definition and integration of astronomical and astrophysical require-
ments with regard "_ouse of a large space-borne telescope.

• Definition of a development program plan and a detailed costing anatysis.

282

1966017557-308



D2-84042-2

5.0 REFERENCES

"A System Study of a Manned Orbital lelescope," Boeing Document 1)2-

84042-1, October 1965.

2--28 "Report on the Optimization of the Manned Orbital Research Laboratory

(MORL) System Concept, " Volmnes I through XXVII, Douglas Aircraft

Company, Sep;ember 1964.

Reference Vol Title Report

2 I Technical Summary 8M-460 72

3 II Systems Analysis--Mission Analysis and SM-46073
Results

4 III Systems Analysis-- ExTperimental Program SM-46074

5 IV System Analysis--Flight Crew SM-46075

6 V Systems Analysis _ Operations SM-460 76

7 VI Systems Analysis_ Mission Profile Data SM-46077

8 VII Systems Analysis_ Rdiability and Safety SM-46078

9 VIII Effectiveness Studies- Alternate Missions 8M-46079

10 iX Effectiveness Studies_ MORL and Unmanned SM-;C080

Concepts

11 X Effectiveness Studies_ MORL and Other SM-46081

Manned Concepts

12 XI Laboratory Configurations and Interi(,rs 8M-46982

13 XII Laboratory Mech'..aical Systems--Structures SM-46083

14 XIII Laboratory Mechanical Systems- Artificial SM-46084
Gravity

15 XIV Labor,_.tory Mechanical Systems _ Envkon- SM-48085

mental Control and Life Support

16 XV Laboratory Mechanical Systems- Stabiliza- SM-46086 \
tion and Control

17 XVI Laboratory Mechanical Systems _ Propul- £M-4£08;"
sion and Reaction Contro!

18 XV!I Laboratory Electrical and Electronic Sys- SM-46088
terns _ Electrical Power

19 YVIII Laboratory Electrical and Electronic Sys- SM-46089

tems _ Alternate Power Systems

283

1966017557-309



I)2-84042-2

l{cfe,'enee Vol Title Report

20 X!X Laboratory Electrical and Electronic'. 5M-46090

Systems- Communications and Telemetry

21 XX Logistics System SM-4¢_0 91

'22 XXI Alternate Logistics System SM-46092

2,3 XXII EN)eriment Briefs, Part i, II, and HI SM-46093
SM-4609zt

SM-460 95

24 XXIII Experimental Program- Tabulation of SM-46096

System Requirements

25 XXIV Teehnolog'y Studies $bi-460 97

26 XXV Preliminary Program Plan bM-4_q998

27 XX\,I ileliaun,,y, oa_ety, and Quality Program SM-46099
Plan

:_8 XXVii Cost Pian S.M-46100

29. "Satarn V Design Data Book for Space Propul::ion System& " Boeing Docu-
ment D5-10059.

30. "Supporting Data for the Attitude Stability and Control of a M.anned Orbital
vi .'1. _"Telescope, Boeing Document D2-8_0.J9-1, Oetobe- 1965.

31. Laverty. N. P., "The Comparative Performance of Electron Tube Photo-
detectors in Terrestrial and Space Navigation Systems, " IEEE Trnnsactions

on Aerospace and Navigational Electronics.

32. Evans, \V..1., "Aerodynamie and Radiation D;sFtu-bance Torques or,

Satellites Having Complex Geometry, " Chapter 5 o[ Torques and .,mtude

Sensing in Earth Sato!!ites, Singer SF, A.oademic Press, 196-i.

Sttuemre oi the Ionosphere, " Chattier 2 of Satelliw33. Hanson, W'. B., " ....

Environ,"-mJ. H',:,dbook by F. S, Johnson, Stenford Uuiversity Press, 1965.

• , Meteoroids34. Whi.,ple, F. C, "On ant! _enetrati_n, " 9th Annual American

Astronautical Society Meelmg, Los Anr;eles, California, January 1963,
revised version.

35. n'A_- _'-.... -' .... u. "'7,.leteoroid !!azard in Near Earth and Deep Space, " NASA "IM-X
5011 £,.

;;0. Valley, Shea L., Handbook of Geophysics and Space Environments, Office
of Aerospace Resenroh, AFCRL, 1965.

37. Saxton, 3. H., "Almninura-Nickel Mirrors," Journal of the Optical Society!

of Arnerica, gol 48, No. 8, August 1958.

284

1966017557-310



I)2 -8 l0 ,_-I"__',

38. "Study ,-rod Analysts of tAghtweight ()ptical Elements," F'crMn-I':lmer (:or-

potation Report 5857, under Contract AF33(616)-6877, October 1961.

39. Ullom, James R., ' Itecent Developments in Large High-Quality Optmal
Mirrors, " Paper presented at the &,ciety of Photographic Instrumentation

Engineer's, l,os Angeles, Cahfornia, April 9, 1962.

40. "Final Repot! _ Feasibility Study of 120-hnch O-')iting Astronomi_:al Telescope

AE-1148, Prepared f,,r Langley Research Center of the National Aeronautics

and Space Administration by J. W. Fecker Oivision of American Optical

Company, under Contract NAS T-1305-18.

41. Holland, L,, Vacuum Deposition of Thin Films, John Wiley & Sons, Inc. ,

Nev.: York, 1956.

42. !lass, Georg, Physics of Thin Films, Vet [.. Academic Press, New York
and London, 1.q63.

_3. V_%ippie, Fred L. and Robert J. Davis, "Proposed Stellar and Interatellar

Survey," The Astronomical Journal, Vol 65. No. 5, June 1960.

44. Hass, Georg a,=d Richard Tousey, "Reflecting Coatings for the Extreme

Cqtraviolet, " Journal of the Optical Society of America, Vol 49, No. 6, June

1959, p. 593.

45. Berning, P. H., G. Hass, and R. P. Madden, "Reflectance-Increasing

Coatings for the Vacuum Uttraviolet :_nd Their Applications, " Journal of the

Optical Society of America, Voi 50, No. 6, June 1960, p. 586.

u ..... and .q. Tousey, "Extreme Ultraviolet ileflec4£. Angel, I). W., W. R. H_nter

tance of LiF-Coated Aluminum Mirrors, " Jourr, al of the Optieal Society of

America, Vet 5i, No. 8, August 1961, p. 913.

,t7. Hall, goseph F. and Robert C. Allen, "Reflectance e f Oxidized Siticon Monoxide

I_,_ms Deposited onto Aluminum Mirrors Compared with Silieen Monoxide

Evaporated in High Vacaa;' Journal of the Optical Society_ of America, Vol 51,

No. 3, March 2961, p. 367.

48. Gillette, R. B. and R. It Brown, "Space Radiation Tests on Itefleeting Sur-

faces," Boeing Do,:u_aent D2--36359-1, Contract JPL 950998, June 2, 1965.

49. '-'" _'" .... 'u.,m,_m, L. R., G. Hass and J. E. Waylonis, Further Studies on MgF 2-
Overcoated Aluminum Mirrors with Highest Reflectance in the Vacuum Ultra-

violet," A_p/q.li__e_ddC_ptic_s_, Vol 5, No. t, January 1!)66, p. 45.

50. Gillette. _qoger B., "Experimental Studies ,'rod Investigatio,_ of Ultraviolet-
Proton Radiation Effects on ,Solar Concentrator Reflective Surfaces, " Boeing

Document D2-84_'83-1, Contract NAS 1-5251, Quarterly Progress Report l,

July 1, 1965 through October 1, 1965.

51. Gillette, Roger B., "Experimental Studies and Investigation of Ultraviolet-
Proton Rad;.ation Effects on Solar Coneen*"ator Reflective Surfaces," Boeing

Document D2-84083-2, Contract NAS 1-5Z51, Quarterly Progz'ess Report 2,

October i, 1965 through January 1, 1966.

285

1966017557-311



I)- --s4042 -2

5-. llufn;ipcl. I{. I'].. "The Practical ,\pp!ication oi Modulation Transfer Vuqc-
ti_,i,s." l)crki:]-l']ln/er, Nor_alk, C;mn., March 6, 1!)(;3.

.5:I. [tck ('orpor;ition, P,_lo-\lto I)ivlsion, Photographic, Reconnaissance Systems

Stu_ly. Sections [I and [I[ (Secret), Al)l)c,ndix [ (Unclassi[ied), Document

('onl_ul No. PA-.t66, prepared for Boeing.

. .... J_a,_tn, an Kodak Company,c,t. Nelx\vn E. \V. I1.. Pho_aphy in Astrc, nomv. r:" ' "
Ilc;cl]esiel'. N. Y 1.950.

.5.5. l.'r(,dricl<, I,m.t..._e__,,,', \\'. , editor. "Final Report --Applications in Ast,:or ,my

Sui_ab!e for Study by Means of Manned Orbiting Observatories snd Rc,ated

[nstrunmntation and Operatioaal Requirements," Volumes I and II, Supported

by .,AS.\ Grant NsG-480.

.5(; Nodal< Plates and Films for Science and Industry Catalog P-9, Eastman

Kodnl< ('ompany. 1!)62.

57. l)ocument 106-60, Telemetry Standards, inter-Range Instrumentation Group,
June 1962.

.Ss. Kuzma, A., 'Introduction to Optical Data Processing," Jniversity of Michigan

Engineering Summer Conference Notes, Chapter 4, May 1965.

.5!). Annette. W. P. and D. G. Bradsha_,, "Compilation of Data on Satellite

Tracking Networks and Navigation Error Analysis Digital Computer Programs, "
rT"

Aerospace Group, _h._ Boeing Company, May 19, 1965.

(i0. .Mann, H. P., "The Accuracy of AMR Instrumentation, " Air Force Missile
Test _' -£ eat _r Technic al Doeumentary Report M_I'C-TDR-64-1, Patrick Air

Force Base, Florida, December 13, 1.063.

(;1. ?;pitzcr. l_vman, at., "Space Telescopes and Components, " The Astronomical

,Journal. Vol 65, No. 5, a_me 1960, p. :_),42.

286

1966017557-312




